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- We will be grading the exams this week.

- We will release solutions, but still have some students taking
make up exams, so are holding off.

- Feel free to ask about the questions in office hours.



Last Few Classes: The Johnson-Lindenstrauss Lemma
- Dimensionality reduction and low-distortion embeddings.

- Statement of the JL Lemma: we can obtain low-distortion
embeddings for any set of points via random projection.

- Reduction of the JL Lemma to the ‘distributional JL Lemma’.

- Proof of the distributional JL lemma.
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- Connections between the JL Lemma, low-distortion
embeddings, and high dimensional geometry.



Last Few Classes: The Johnson-Lindenstrauss Lemma
- Dimensionality reduction and low-distortion embeddings.

- Statement of the JL Lemma: we can obtain low-distortion
embeddings for any set of points via random projection.

- Reduction of the JL Lemma to the ‘distributional JL Lemma’.

- Proof of the distributional JL lemma.

This Class:
- Connections between the JL Lemma, low-distortion
embeddings, and high dimensional geometry.
Next Few Classes:

- Data-dependent dimensionality reduction via PCA. Formulation
as low-rank matrix approximation.



The Johnson-Lindenstrauss Lemma and High
Dimensional Geometry



The Johnson-Lindenstrauss Lemma and High
Dimensional Geometry

- High-dimensional Euclidean space looks very different
from low-dimensional space. So how can JL work?

- Is Euclidean distance in high-dimensional meaningless,
making JL useless? (The curse of dimensionality)



Low-Dimensional Intuition

d-dimensional space

k-dim. subspace V



Low-Dimensional Intuition

d-dimensional space

k-dim. subspace V

This can be a bit dangerous as in reality high-dimensional space is
very different from low-dimensional space. 5



Orthogonal Vectors

What is the largest set of mutually orthogonal unit vectors in
d-dimensional space?
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Orthogonal Vectors

What is the largest set of mutually orthogonal unit vectors in
d-dimensional space?
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Nearly Orthogonal Vectors

What is the largest set of unit vectors in d-dimensional space that
have all pairwise dot products |(X, V)| < €? (think e = .01)
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Nearly Orthogonal Vectors

What is the largest set of unit vectors in d-dimensional space that
have all pairwise dot products |(X, V)| < €? (think e = .01)
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Nearly Orthogonal Vectors

What is the largest set of unit vectors in d-dimensional space that
have all pairwise dot products |(X, V)| < €? (think e = .01)

a)d b) ©(d) c) ©(d?) d) 20(9)
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In fact, an exponentially large set of random vectors will be nearly
pairwise orthogonal with high probability!



Orthogonal Vectors Proof

Claim: 28(<9) random d-dimensional unit vectors will have all
pairwise dot products |(X, )| < e (be nearly orthogonal) with high
probability.



Orthogonal Vectors Proof

Claim: 29(¢9 random d-dimensional unit vectors will have all

pairwise dot products |(X, )| < e (be nearly orthogonal) with high
probability.

Proof: Let X;, ..., X; each have independent randlom entries set to
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Orthogonal Vectors Proof

Claim: 28(<’d)) random d-dimensional unit vectors will have all
pairwise dot products |(X, )| < e (be nearly orthogonal) with high

probability. d

e |
Proof: Let Xj,...,X; each have independent random entries set to
+1/V/d.

- Whatis [%],? =] \]gal - m - \

- What is E[(X;, X;)]?
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Orthogonal Vectors Proof

Claim: 29(¢9 random d-dimensional unit vectors will have all

pairwise dot products |(X, )| < e (be nearly orthogonal) with high
probability.

Proof: Let X;,...,X; each have independent random entries set to

+1/V/d.

- What is [|X[|,? Every X; is always a unit vector.

- What is E[(X;, X;)]?



Orthogonal Vectors Proof

Claim: 29(¢9 random d-dimensional unit vectors will have all

pairwise dot products |(X, )| < e (be nearly orthogonal) with high
probability.

Proof: Let X;,...,X; each have independent random entries set to

+1/V/d.

- What is [|X[|,? Every X; is always a unit vector.

+ Whatis E[(%,, X)]? E[{%,%)] = 0



Orthogonal Vectors Proof

Claim: 28(<’d)) random d-dimensional unit vectors will have all
pairwise dot products |(X, )| < e (be nearly orthogonal) with high

probability.
Proof: Let X;,...,X; each have indep@/{}ﬁienj;\, rapdom entries set to
+1/Vd. Yol ? - _‘
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- What is [|X[|,? Every X; is aFvvays a unit vector
+ Whatis E[(X,,X)]? E[{%,%)] = 0 GRSV

- By a Chernoff bound, Pr[|(X;,X})| > €] < 2e~9/6 (great exercise). 01
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Orthogonal Vectors Proof

Claim: 28(¢9 random d-dimensional unit vectors will have all

pairwise dot products |(X, )| < e (be nearly orthogonal) with high
probability.

Proof: Let Xi,...,X: each have independent random entries set to
+1/v/d. T

- What is ||Xi||,? Every X; is always a unit vector.

+ What is E[(%,%)]? E[{%,%)] = 0

- By a Chernoff bound, Pr[|(X;,X})| > €] < 2e—<9/5 (great exercise).

- If we chose t = %eezd/”, using a union bound over all
() < 1e<'d/5 possIBle pairs, with probability > 3/4 all will be
\rﬁary&orthogonal. 1 o —
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Curse of Dimensionality

Up Shot: In d-dimensional space, a set of 29(<9 random unit vectors
have all pairwise dot products at most e (think e = .01)



Curse of Dimensionality

Up Shot: In d-dimensional space, a set of 29(<d) random unit vectors
have all pairwise dot products at most € (think e = .01)
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Curse of Dimensionality

Up Shot: In d-dimensional space, a set of 29(<d) random unit vectors
have all pairwise dot products at mos{g (think e =.01)

1K = X115 = Xl + %113 — 2%/%;
~ — —
I+ ) 22¢




Curse of Dimensionality

Up Shot: In d-dimensional space, a set of 29(<d) random unit vectors
have all pairwise dot products at most € (think e = .01)

1% = X113 = [I%il15 + I%113 — 2X7%; € [1.98,2.02].



Curse of Dimensionality

Up Shot: In d-dimensional space, a set of 29(<d) random unit vectors
have all pairwise dot products at most € (think e = .01)

1% = X113 = [I%il15 + I%113 — 2X7%; € [1.98,2.02].

Even with an exponential number of random vector samples, we
don't see any nearby vectors.



Curse of Dimensionality

Up Shot: In d-dimensional space, a set of, g@(i&?) random unit vectors
have all pairwise dot products at most € (think e = .01)

1K = %[5 = I%i[13 + %112 — 2X/%; € [1.98,2.02)].
—

Even with an exponential number of random vector samples, we
don't see any nearby vectors.

- One version of the ‘curse of dimensionality’.

- If all your distances are roughly the same, distance based
methods (k-means clustering, nearest neighbors, SVYMs, etc.)
aren’t going to work well.

- Distances are only meaningful if we have lots of structure and
our data isn't just independent random vectors.
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Curse of Dimensionality

Distances for MNIST Digits:
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Another Interpretation: Tells us that random-data can be a very bad
model for actual input data. 10



Connection to Dimensionality Reduction

Recall: The Johnson Lindenstrauss lemma states that if M e R™*4 js
a random matrix (linear map) with m =0 ('°g”) forXy,..., X, e R9
with high probability, for all i, : i

(1= o)X _)_(JH% < |Inx; - nX/”z (1+ o)X _XJHZ
o
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Connection to Dimensionality Reduction
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Recall: The Johnson Lindenstrauss lemma states that if M e R™*4 js €
a random matrix (linear map) with m =0 ('°g”) forXi,...,Xn € RY

with high probability, for all i, :
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Implies: If X;,...,X, are nearly orthogonal unit vectors in
d- d|men5|ons (with pairwise dot products bounded bz €/8), then
Hrrl'xfuz HI‘IX 4 are nearly orthogonal unit vectors in m-dimensions

(with pairwise dot products bounded by e).
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Connection to Dimensionality Reduction

Recall: The Johnson Lindenstrauss lemma states that if M e R™*4 js
a random matrix (linear map) with m =0 ('°g”) forXp,..., X, e RY
with high probability, for all i, :

(1= o)X _)_(JH% < |Inx; - nX/”z (1+ o)X _XJHZ

Implies: If X, ..., X, are nearly orthogonal unit vectors in
d—dimensions (with pairwise dot products bounded by ¢/8), then
HHHTXEHZ’ HI‘IX 4 are nearly orthogonal unit vectors in m-dimensions

(with pairwise dot products bounded by e).

Algebra is a bit messy but a good exercise to partially work
through.

1



Connection to Dimensionality Reduction

Claim 1: n nearly orthogonal unit vectors can be projected to
m=20 ("’5”) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 20(€M) nearly
orthogonal vectors. ~—

12



Connection to Dimensionality Reduction

Claim 1: n nearly orthogonal unit vectors can be projected to
m=20 ("’5”) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 20(€M) nearly
orthogonal vectors.

- For both these to hold it must be that n < 20(¢m).
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Connection to Dimensionality Reduction

Claim 1: n nearly orthogonal unit vectors can be projected to
m=20 ("’5”) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 20(€M) nearly
orthogonal vectors.

- For both these to hold it must be that n < 20(¢m).

. zO(ezm) > 20(logn) — . _—
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Connection to Dimensionality Reduction

Claim 1: n nearly orthogonal unit vectors can be projected to
m=20 ("’5”) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 2™ nearly
%c
orthogonal vectors.

- For both these to hold it must be that n < 20(¢m).

. 20(¢m) > 20(legn) — n Tells us that the JL lemma is optimal
up to constants.
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Connection to Dimensionality Reduction

Claim 1: n nearly orthogonal unit vectors can be projected to

m=20 ( "’%”) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 20(€M) nearly
orthogonal vectors.

- For both these to hold it must be that n < 20(¢m),

. 20(¢m) > 20(legn) — n Tells us that the JL lemma is optimal
up to constants.

- mis chosen just large enough so that the odd geometry of
d-dimensional space still holds on the n points in
question after projection to a much lower dimensional
space.
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Bizarre Shape of High-Dimensional Balls

Let By be the unit ball in d dimensions. By = {x € R? : ||x||, < 1}.

L3
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Bizarre Shape of High-Dimensional Balls

Let By be the unit ball in d dimensions. By = {x € R? : ||x||, < 1}.

What percentage of the volume of By falls within e distance of its
surface? T
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Bizarre Shape of High-Dimensional Balls

Let By be the unit ball in d dimensions. By = {x € R? : ||x||, < 1}.

What percentage of the volume of By falls within e distance of its
surface?
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Bizarre Shape of High-Dimensional Balls

Let By be the unit ball in d dimensions. By = {x € R? : ||x||, < 1}.

What percentage of the volume of By falls within e distance of its

surface? Answer: all but a (1 — €)¢ < e~<? fraction. Exponentially
T —

small in the dimension d! ch,

|
(-9 <3 e

d
Volume of a radius R ball is d/z) - RY. .



Bizarre Shape of High-Dimensional Balls

All but an e~ fraction of a unit ball's volume is within e of its
surface.
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Bizarre Shape of High-Dimensional Balls

All but an e=<? fraction of a unit ball's volume is within e of its
surface. If we randomly sample points with ||x]|; < 1, nearly all will
have [[x]l, > 1—e
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Bizarre Shape of High-Dimensional Balls

All but an e=<? fraction of a unit ball's volume is within e of its
surface. If we randomly sample points with ||x]|; < 1, nearly all will
have ||x|[; >1—e.

- Isoperimetric inequality: the ball has the minimum surface
area/volume ratio of any shape.

ooQ
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Bizarre Shape of High-Dimensional Balls

All but an e=<? fraction of a unit ball's volume is within e of its
surface. If we randomly sample points with ||x]|; < 1, nearly all will
have ||x|[; >1—e.

- Isoperimetric inequality: the ball has the minimum surface
area/volume ratio of any shape.

ooQ

- If we randomly sample points from any high-dimensional
shape, nearly all will fall near its surface.

- ‘All points are outliers! 14



Bizarre Shape of High-Dimensional Balls

What fraction of the small cubes are visible on the surface of the
larger 10 x 10 x 10 cube?




Bizarre Shape of High-Dimensional Balls

What fraction of the small cubes are visible on the surface of the
larger 10 x 10 x 10 cube?

s, 0 S
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Bizarre Shape of High-Dimensional Balls

What percentage of the volume of By falls within e distance of its
equator?

L
)

Formally: volume of set S = @d Cx(1)] < €}
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Bizarre Shape of High-Dimensional Balls

What percentage of the volume of By falls within e distance of its
equator? Answer: all but a 28(=<'9) fraction.
—_ Y

Formally: volume of set S = {x € By : [x(1)| < €}.



Bizarre Shape of High-Dimensional Balls

What percentage of the volume of By falls within e distance of its
equator? Answer: all but a 26(=<'9) fraction.

Formally: volume of set S = {x € By : [x(1)| < €}.

By symmetry, all but a 20(=<'9) fraction of the volume falls within ¢ of
any equator! S={x € By : |(x,t)] < ¢} 16



Bizarre Shape of High-Dimensional Balls

Claim 1: All but a 29(=<"d fraction of the volume of a ball falls within
e of any equator.

Claim 2: All but a 22(=<d) fraction falls within e of its surface.

17



Bizarre Shape of High-Dimensional Balls

Claim 1: All but a 29(=<9) fraction of the volume of a ball falls within
e of any equator.

Claim 2: All but a 22(=<d) fraction falls within e of its surface.
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Bizarre Shape of High-Dimensional Balls

Claim 1: All but a 29(=<9) fraction of the volume of a ball falls within
e of any equator.

Claim 2: All but a 22(=<d) fraction falls within e of its surface.

How is this possible?



Bizarre Shape of High-Dimensional Balls

Claim 1: All but a 29(=<9) fraction of the volume of a ball falls within
e of any equator.

Claim 2: All but a 22(=<d) fraction falls within e of its surface.

How is this possible? High-dimensional space looks nothing like this
picture!



Take-aways

- High-dimensional space behaves very differently from
low-dimensional space.

- Random projection (i.e., the JL Lemma) reduces to a much
lower-dimensional space that is still large enough to
capture this behavior on a subset of n points.

- Need to be careful when using low-dimensional intuition
for high-dimensional vectors.

- Need to be careful when modeling data as random vectors
in high-dimensions.

18



Additional Material
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Concentration of Volume At Equator

Claim: All but a 2°(=<"9) fraction of the volume of a ball falls within ¢
of its equator. le, in S ={x € By : [x(1)] < €}.
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Concentration of Volume At Equator

Claim: All but a 2°(=<"9) fraction of the volume of a ball falls within ¢
of its equator. le, in S ={x € By : [x(1)] < €}.

Proof Sketch:

- Let x have independent Gaussian A(0, 1) entries and let
X = HXH X is selected uniformly at random from the surface of
the ball.
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of its equator. le, in S ={x € By : [x(1)] < €}.

Proof Sketch:

- Let x have independent Gaussian A(0, 1) entries and let
X = HXH X is selected uniformly at random from the surface of

the ball.
- Suffices to show that Pr|x(1)| > ¢] < 29(=<9_why?
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Concentration of Volume At Equator

Claim: All but a 2°(=<"9) fraction of the volume of a ball falls within ¢
of its equator. le, in S ={x € By : [x(1)] < €}.

Proof Sketch:

- Let x have independent Gaussian A(0, 1) entries and let
X = HXH X is selected uniformly at random from the surface of

the ball.
- Suffices to show that Pr|x(1)| > ¢] < 29(=<9_why?
- X(1) = 75k what is B[|1x|3)?
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Concentration of Volume At Equator

Claim: All but a 2°(=<"9) fraction of the volume of a ball falls within ¢
of its equator. le, in S ={x € By : [x(1)] < €}.

Proof Sketch:

- Let x have independent Gaussian A(0, 1) entries and let
X = HXH X is selected uniformly at random from the surface of

the ball.
- Suffices to show that Pr|x(1)| > ¢] < 29(=<9_why?

©X(1) = it Bl = L EXGY = d.
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Concentration of Volume At Equator

Claim: All but a 2°(=<"9) fraction of the volume of a ball falls within ¢
of its equator. le, in S ={x € By : [x(1)] < €}.

Proof Sketch:

- Let x have independent Gaussian A(0, 1) entries and let
X = HXH X is selected uniformly at random from the surface of

the ball.
- Suffices to show that Pr|x(1)| > ¢] < 29(=<9_why?
- X(1) = 149 3 = L EIX()?] = d. Pr{|ix|3 < d/2] < 270
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Concentration of Volume At Equator

Claim: All but a 2°(=<"9) fraction of the volume of a ball falls within ¢
of its equator. le, in S ={x € By : [x(1)] < €}.

Proof Sketch:

- Let x have independent Gaussian A(0, 1) entries and let
X = HXH X is selected uniformly at random from the surface of
the ball.

- Suffices to show that Pr|x(1)| > ¢] < 29(=<9_why?

- %(1) = 20 E[IxB] = L ElX()?] = d. Pr{ix < d/2] < 270

- Conditioning on ||| > d/2, since x(1) is normally distributed,

Pr{x(1)] > €] = Pr{ix(1)[ > € [Ix]l2]
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Concentration of Volume At Equator

Claim: All but a 2°(=<"9) fraction of the volume of a ball falls within ¢
of its equator. le, in S ={x € By : [x(1)] < €}.

Proof Sketch:

- Let x have independent Gaussian A(0, 1) entries and let
X = HXH X is selected uniformly at random from the surface of
the ball.

- Suffices to show that Pr|x(1)| > ¢] < 29(=<9_why?

- %(1) = 20 E[IxB] = L ElX()?] = d. Pr{ix < d/2] < 270

- Conditioning on ||| > d/2, since x(1) is normally distributed,

Pr{x(1)] > €] = Pr{ix(1)[ > € [Ix]l2]

< Prx(1)] > ¢ \/d/2)
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Concentration of Volume At Equator

Claim: All but a 2°(=<"9) fraction of the volume of a ball falls within ¢
of its equator. le, in S ={x € By : [x(1)] < €}.

Proof Sketch:

- Let x have independent Gaussian A(0, 1) entries and let
X = HXH X is selected uniformly at random from the surface of
the ball.

- Suffices to show that Pr|x(1)| > ¢] < 29(=<9_why?

- %(1) = 20 E[IxB] = L ElX()?] = d. Pr{ix < d/2] < 270

- Conditioning on ||| > d/2, since x(1) is normally distributed,

PrX(D] > €] = Pr{x(1)| > € [Ix]|.]
< PrX(1)] > € - /d/2] = 20(-(«V/3/2") = 20(~€0)
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High-Dimensional Cubes

Let Cy4 be the d-dimensional cube: Cy = {x € R? : |x(i)| < 1V i}.

_—
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High-Dimensional Cubes

Let Cy be the d-dimensional cube: C; = {x € RY : [x(i)| <1V i}.

In low-dimensions, the cube is not that different from the ball.
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High-Dimensional Cubes

Let Cy4 be the d-dimensional cube: Cy = {x € R? : |x(i)| < 1V i}.

In low-dimensions, the cube is not that different from the ball.

| \

d
But volume of Cy is 2 29 while volume of B9 is o = = Zom- A huge gap!

——
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High-Dimensional Cubes

Let Cy be the d-dimensional cube: C; = {x € RY : [x(i)| <1V i}.

In low-dimensions, the cube is not that different from the ball.

d
But volume of C4 is 2¢ while volume of B9 is (dﬂ/—zz)[ = Zom- A huge gap!

So something is very different about these shapes...

21



High-Dimensional Cubes

2 dimensions
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High-Dimensional Cubes

2 dimensions

Corners of cube are v/d times further away from the origin than the
surface of the ball.
2



High-Dimensional Cubes

P a4 I/J/ @
i}m high dimensions
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Corners of cube are v/d times further away from the origin than the
surface of the ball.
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High-Dimensional Cubes

Data generated from the ball By will behave very differently than
data generated from the cube Cj.
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High-Dimensional Cubes

Data generated from the ball By will behave very differently than
data generated from the cube Cj.

© X ~ By has [|x||3 < 1.

- X ~ Cq has E[||x|2] =7,
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High-Dimensional Cubes

Data generated from the ball By will behave very differently than
data generated from the cube Cj.

© X ~ By has [|x||3 < 1.

-+ X ~ Cq has E[||x||2] = d/3,
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High-Dimensional Cubes

Data generated from the ball By will behave very differently than
data generated from the cube Cj.

© X ~ By has [|x||3 < 1.

- X ~ Cq has E[|x|2] = d/3, and Pr[|x||2 < d/6] < 2-°@).
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High-Dimensional Cubes

Data generated from the ball By will behave very differently than
data generated from the cube Cj.

© X~ By has [|x]]3 < 1.
- X ~ Cy has E[|x|2] = d/3, and Pr[||x|2 < d/6] < 2.

- Almost all the volume of the unit cube falls far away from the
origin - i.e., far outside the unit ball.

2 dimensions high dimensions

1Y
b |
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