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Logistics

• We will be grading the exams this week.
• We will release solutions, but still have some students taking
make up exams, so are holding off.

• Feel free to ask about the questions in office hours.
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Summary

Last Few Classes: The Johnson-Lindenstrauss Lemma

• Dimensionality reduction and low-distortion embeddings.

• Statement of the JL Lemma: we can obtain low-distortion
embeddings for any set of points via random projection.

• Reduction of the JL Lemma to the ‘distributional JL Lemma’.

• Proof of the distributional JL lemma.

This Class:

• Connections between the JL Lemma, low-distortion
embeddings, and high dimensional geometry.

Next Few Classes:

• Data-dependent dimensionality reduction via PCA. Formulation
as low-rank matrix approximation.
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The Johnson-Lindenstrauss Lemma and High
Dimensional Geometry

• High-dimensional Euclidean space looks very different
from low-dimensional space. So how can JL work?

• Is Euclidean distance in high-dimensional meaningless,
making JL useless? (The curse of dimensionality)
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Low-Dimensional Intuition

This can be a bit dangerous as in reality high-dimensional space is
very different from low-dimensional space.
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Orthogonal Vectors

What is the largest set of mutually orthogonal unit vectors in
d-dimensional space?

a) 1 b) log d c)
√
d d) d
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Nearly Orthogonal Vectors

What is the largest set of unit vectors in d-dimensional space that
have all pairwise dot products |⟨⃗x, y⃗⟩| ≤ ϵ? (think ϵ = .01)

a) d b) Θ(d) c) Θ(d2) d) 2Θ(d)

In fact, an exponentially large set of random vectors will be nearly
pairwise orthogonal with high probability!
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Orthogonal Vectors Proof

Claim: 2Θ(ϵ2d) random d-dimensional unit vectors will have all
pairwise dot products |⟨⃗x, y⃗⟩| ≤ ϵ (be nearly orthogonal) with high
probability.

Proof: Let x⃗1, . . . , x⃗t each have independent random entries set to
±1/

√
d.

• What is ∥⃗xi∥2?

Every x⃗i is always a unit vector.

• What is E[⟨⃗xi, x⃗j⟩]?

E[⟨⃗xi, x⃗j⟩] = 0

• By a Chernoff bound, Pr[|⟨⃗xi, x⃗j⟩| ≥ ϵ] ≤ 2e−ϵ2d/6 (great exercise).

• If we chose t = 1
2e

ϵ2d/12, using a union bound over all(t
2
)
≤ 1

8e
ϵ2d/6 possible pairs, with probability ≥ 3/4 all will be

nearly orthogonal.
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Curse of Dimensionality

Up Shot: In d-dimensional space, a set of 2Θ(ϵ2d) random unit vectors
have all pairwise dot products at most ϵ (think ϵ = .01)

∥⃗xi − x⃗j∥22

= ∥⃗xi∥22 + ∥⃗xj∥22 − 2⃗xTi x⃗j ∈ [1.98, 2.02].

Even with an exponential number of random vector samples, we
don’t see any nearby vectors.

• One version of the ‘curse of dimensionality’.

• If all your distances are roughly the same, distance based
methods (k-means clustering, nearest neighbors, SVMs, etc.)
aren’t going to work well.

• Distances are only meaningful if we have lots of structure and
our data isn’t just independent random vectors.
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Curse of Dimensionality
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Another Interpretation: Tells us that random data can be a very bad
model for actual input data.
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Connection to Dimensionality Reduction

Recall: The Johnson Lindenstrauss lemma states that if Π ∈ Rm×d is
a random matrix (linear map) with m = O

(
log n
ϵ2

)
, for x⃗1, . . . , x⃗n ∈ Rd

with high probability, for all i, j:

(1− ϵ)∥⃗xi − x⃗j∥22 ≤ ∥Πx⃗i −Πx⃗j∥22 ≤ (1+ ϵ)∥⃗xi − x⃗j∥22.

Implies: If x⃗1, . . . , x⃗n are nearly orthogonal unit vectors in
d-dimensions (with pairwise dot products bounded by ϵ/8), then
Π⃗x1

∥Π⃗x1∥2
, . . . , Π⃗xn

∥Π⃗xn∥2
are nearly orthogonal unit vectors in m-dimensions

(with pairwise dot products bounded by ϵ).

• Algebra is a bit messy but a good exercise to partially work
through.
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Connection to Dimensionality Reduction

Claim 1: n nearly orthogonal unit vectors can be projected to
m = O

(
log n
ϵ2

)
dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 2O(ϵ2m) nearly
orthogonal vectors.

• For both these to hold it must be that n ≤ 2O(ϵ2m).
• 2O(ϵ2m) ≥ 2O(log n) = n.

Tells us that the JL lemma is optimal
up to constants.

• m is chosen just large enough so that the odd geometry of
d-dimensional space still holds on the n points in
question after projection to a much lower dimensional
space.

12
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Bizarre Shape of High-Dimensional Balls

Let Bd be the unit ball in d dimensions. Bd = {x ∈ Rd : ∥x∥2 ≤ 1}.

What percentage of the volume of Bd falls within ϵ distance of its
surface?

Answer: all but a (1− ϵ)d ≤ e−ϵd fraction. Exponentially
small in the dimension d!

Volume of a radius R ball is π
d
2

(d/2)! · R
d.

13
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Bizarre Shape of High-Dimensional Balls

All but an e−ϵd fraction of a unit ball’s volume is within ϵ of its
surface.

If we randomly sample points with ∥x∥2 ≤ 1, nearly all will
have ∥x∥2 ≥ 1− ϵ.

• Isoperimetric inequality: the ball has the minimum surface
area/volume ratio of any shape.

• If we randomly sample points from any high-dimensional
shape, nearly all will fall near its surface.

• ‘All points are outliers.’
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Bizarre Shape of High-Dimensional Balls

What fraction of the small cubes are visible on the surface of the
larger 10× 10× 10 cube?

103 − 83

103 =
1000− 512

1000
= .488.

15
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Bizarre Shape of High-Dimensional Balls

What percentage of the volume of Bd falls within ϵ distance of its
equator?

Answer: all but a 2Θ(−ϵ2d) fraction.

Formally: volume of set S = {x ∈ Bd : |x(1)| ≤ ϵ}.

By symmetry, all but a 2Θ(−ϵ2d) fraction of the volume falls within ϵ of
any equator! S = {x ∈ Bd : |⟨x, t⟩| ≤ ϵ}

16
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Bizarre Shape of High-Dimensional Balls

Claim 1: All but a 2Θ(−ϵ2d) fraction of the volume of a ball falls within
ϵ of any equator.

Claim 2: All but a 2Θ(−ϵd) fraction falls within ϵ of its surface.

How is this possible?

High-dimensional space looks nothing like this
picture!

17
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Take-aways

• High-dimensional space behaves very differently from
low-dimensional space.

• Random projection (i.e., the JL Lemma) reduces to a much
lower-dimensional space that is still large enough to
capture this behavior on a subset of n points.

• Need to be careful when using low-dimensional intuition
for high-dimensional vectors.

• Need to be careful when modeling data as random vectors
in high-dimensions.
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Additional Material
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Concentration of Volume At Equator

Claim: All but a 2Θ(−ϵ2d) fraction of the volume of a ball falls within ϵ

of its equator. I.e., in S = {x ∈ Bd : |x(1)| ≤ ϵ}.

Proof Sketch:

• Let x have independent Gaussian N (0, 1) entries and let
x̄ = x

∥x∥2
. x̄ is selected uniformly at random from the surface of

the ball.

• Suffices to show that Pr[|x̄(1)| > ϵ] ≤ 2Θ(−ϵ2d). Why?

• x̄(1) = x(1)
∥x∥2

. What is E[∥x∥22]?

Pr[∥x∥22 ≤ d/2] ≤ 2−Θ(d)

• Conditioning on ∥x∥22 ≥ d/2, since x(1) is normally distributed,

Pr[|x̄(1)| > ϵ] = Pr[|x(1)| > ϵ · ∥x∥2]

≤ Pr[|x(1)| > ϵ ·
√

d/2]

= 2Θ(−(ϵ
√

d/2)2) = 2Θ(−ϵ2d).
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High-Dimensional Cubes

Let Cd be the d-dimensional cube: Cd = {x ∈ Rd : |x(i)| ≤ 1 ∀ i}.

In low-dimensions, the cube is not that different from the ball.

But volume of Cd is 2d while volume of Bd is π
d
2

(d/2)! =
1

dΘ(d) . A huge gap!
So something is very different about these shapes...
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High-Dimensional Cubes

Corners of cube are
√
d times further away from the origin than the

surface of the ball.
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High-Dimensional Cubes

Data generated from the ball Bd will behave very differently than
data generated from the cube Cd.

• x ∼ Bd has ∥x∥22 ≤ 1.

• x ∼ Cd has E[∥x∥22] =?,

and Pr[∥x∥22 ≤ d/6] ≤ 2−Θ(d).

• Almost all the volume of the unit cube falls far away from the
origin – i.e., far outside the unit ball.
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