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- Problem Set 2 is due Friday, 11:59pm.
- No quiz this week.
- The exam will be held next Thursday in class.

- We will do some midterm review in class on Tuesday. | will also
hold additional office hours for midterm prep, TBD.



Last Class: The Johnson-Lindenstrauss Lemma

- Intro to dimensionality reduction and low-distortion
embeddings.

- Statement of the JL Lemma: we can obtain low-distortion
embeddings for any set of points via random projection.

This Class:

+ Reduction of the JL Lemma to the ‘distributional JL Lemma’.
- Proof of the distributional JL lemma.

- Example application to clustering.



The Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma: For any set of points
X1,...,X, € R?and e > 0 there exists a linear map M : RY — R™
such thatm =0 ('%”) and letting % = MNX;:

Foralli,j: (1= e)llXi — Xlla < 1% = Xjll2 < (14 €)lIX; — Xjll2-

Further, if M e R™*? has each entry chosen iid. from
N(0,1/m), it satisfies the guarantee with high probability.

For d = 1 trillion, e = .05, and n = 100, 000, m & 6600.

Very surprising! Powerful result with a simple construction: applying
a random linear transformation to a set of points preserves
distances between all those points with high probability.



Random Projection

Forany Xi,...,X, and I € R™<¢ with each entry chosen i.i.d. from
N(0,1/m), with high probability, letting X; = NX;:

Foralli,j: (1= e)lIXi = Xjll2 < 1% = Xjll2 < (14 €)l1Xi = Xj2-
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- Mis known as a random projection. It is a random linear
function, mapping length d vectors to length m vectors.

- M is data oblivious. Stark contrast to methods like PCA.



Algorithmic Considerations

- Many alternative constructions: +1 entries, sparse (most
entries 0), Fourier structured, etc. = more efficient
computation of X; = MX,.

- Data oblivious property means that once M is chosen,
X1,...,Xp can be computed in a stream with little memory.

- Memory needed is just O(d 4+ nm) vs. O(nd) to store the
full data set.

- Compression can also be easily performed in parallel on
different servers.

- When new data points are added, can be easily
compressed, without updating existing points.



Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.id. as N(0,1/m). If we set m = O ("’g(eﬂ) then for any
y € RY with probability > 1— 6

(1=l < IMyll2 < (1+ )lI¥ll2

Applying a random matrix I to any vector y preserves y's norm with
high probability.
- Like a low-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.

- Can be proven from first principles.

N e R™%4: random projection matrix. d: original dimension. m: compressed
dimension, e: embedding error, §: embedding failure prob. 7




Distributional JL = JL

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection M preserves the norm of any y. The main JL
Lemma says that I preserves distances between vectors.

Since M is linear these are the same thing!

Proof: Given Xy, ..., X,, define (1) vectors y; where y; = X; — X;.
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- If we choose Mwith m =0 <'°g1/5), for each yj; with probability
> 1—§ we have:
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Distributional JL = JL

Claim: If we choose M with i.i.d. A(0,1/m) entries and
m=0 (M) letting X; = MX;, for each pair X, X; with probability
>1— 6" we have:
(1= lIXi = Xjll2 < 1% — Xjll2 < (1+ €)X — Xj[J2-
With what probability are all pairwise distances preserved?

Union bound: With probability > 1— (3) - &' all pairwise distances are
preserved.

Apply the claim with ¢’ =6/(5). = form =0 ('°g‘jz/5')), all
pairwise distances are preserved with probability > 1 — 4.

:O<|g(1/a)) :o<'°g(£2)/5)> _O<|og(:22/5)> _O<|g<n/>>>

Yields the JL lemma.



Distributional JL Proof

7~

~

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O ("’%ﬂ) then for any
y € RY with probability > 1— 6

(1=l < IMYll2 < (1+ )lI¥ll2

- Lety denote I'Iy and let M(j) denote the j row of M.
* Foranyj, y(j) i) y) = Z, 18i - V(i) where g ~ N(0,1/m).
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¥ € RY arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection. d: original dim. m: compressed dim, e: error, §: failure prob.
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Distributional JL Proof

- Lety denote My and let N(j) denote the j row of N.

- ForanyJ, y(j) j),9) = S8 - J(i) where g ~ A(0,1/m).
- g V(i) ~N(0, Y () ) normally distributed with variance y()

: 1 y(H?
variance variance ——— .
m 1 m 2varian
—— | \ variance Y@
" 1
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gi gi-yQ@) ¥() =[g1 - y(1) + g2 y(2

What is the distribution of y(j)? Also Gaussian!

¥ € R% arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — y. M(j): j row of N, d: original dimension. m: com- 1
pressed dimension, g;: normally distributed random variable.



Distributional JL Proof

Letting y = Ny, we have y(j) = (N(j), V) and:

d ()2
) = Zg; (i) where g - y(i) ~ N <O7 y(l)) .

- m
=1

Stability of Gaussian Random Variables. For independent a ~
N(m,0%) and b ~ N (2, 07) we have:

a+ b~ N(m + p2, 07 + 03)

/\+ /\ - J\
(i 2 v(d)* 1171 7 itself i
Thus, ¥(j) ~ N(0, y( I y( R 19 WLy e, § itself is a random
Gaussian vector. Rotat\onal invariance of the Gaussian distribution.

[ % E RY: arbitrary vector, y € R™: compressed vector, M € R™*9: random ] 12
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Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny

§() ~ N0, |712/m).
What is E[|§][2]?

E[[[§]5] = E Zy =ZE[9(J)2]

Soy has the right norm in expectation.

How is ||y||3 distributed? Does it concentrate?

¥ € RY: arbitrary vector, j € R™: compressed vector, M € R™*%: random
projection mapping y — y. M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable
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Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny
y(j) ~ N(0, [[¥]3/m) and E[I§]15] = [I¥l3

19112 = >, ¥i(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)
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Lemma: (Chi-Squared Concentration) Letting Z be a Chi-

Squared random variable with m degrees of freedom, »

Prll7 7| > 071 < Do—Me /8



Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.
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k-means Objective: Cost(Cy,...,Ck) = Zmin ZZHX 13-

J =1 XeCy
Write in terms of distances:

Cost(Cy, ..., Cq) = Zmin, Z > 1% =Xl

J 1 X%1,%€Cx 15



Example Application: k-means clustering

k-means Objective: Cost(Cy,...,Cy) = Zmin, Z > I% =Kl

J =1 X1,%€Cy

If we randomly projecttom =0 ( ) dimensions, for all pairs X3, X,

(1= lI% =%l < 1% — %[l < (1 + ¢)lIX = %[} =

Letting Cost(Cy, ..., Ck) = mln Z Z %1 — %2 |5

j 1 X1,%€Cx
(1 —€)Cost(Cy,...,Cx) < Cost(Cy,...,Ck) < (14 €)Cost(Cy, ..., Cp).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(Cs, ..., Ck). The optimal set of clusters
will have true cost within 1+ ce times the true optimal. Good
exercise to prove this.



