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- Problem Set 2 is due on Friday at 11:59pm.
- Midterm is in class next Thursday, 10/20.

- | have posted a study guide and practice questions on the
course schedule.



Last Class:

- Introduced the k-frequent elements problem - identify all
elements of a stream of n elements that occur > n/k times.

- Saw how to solve approximately in O(klogn/e) space using the
Count-min sketch algorithm. d.k/j

- |Simple analysis based on Markov's inequality and repeated
random hashing.

This Class:

- Recap and finish up Count-min sketch

- Randomized methods for dimensionality reduction.
- The Johnson-Lindenstrauss Lemma.
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Count-Min Sketch

Goal: Return all items in a stream of n elements with frequency
at least n/k. Don't return any with frequency < (1—¢) - 3.
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Count-Min Sketch

Goal: Return all items in a stream of n elements with frequency
at least n/k._Don't return any with frequency < (1—¢) - 3.
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- If we etf(x) be the minimum of t = |og2(1/5) estimates,
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Count-Min Sketch

Goal: Return all items in a stream of n elements with frequency

at least n/lf\e Don't return any with frequency < (1‘16\)\%
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- If we let f(x) be the minimum of t = log,(1/d) estimates,
fx) < ( ) < f(x) + m T with probability at least 1 — 4.

- Setting m = O(fe/e),ﬁ’: 0(d'/n), and applying a union
bound, we have a good estimate for all f(x )W|th L) | N W!
probability at least1—¢. =T = O( -1-/ 5
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Identifying Frequent Elements

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequency
for all elements in the stream?



Identifying Frequent Elements

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequencys

for all elements in the stream? X

One approach: 2 le

I-< [:\\g eﬁ%r_;j
- When a new item comes in at step I, check If its estimated
frequency is > iél? and store it if so.
At step i remove any stored items whose estimated
(:equency drops below i/k.
* Store at most O(R) items at once and have all items with
frequency > n/k stored at the end of the stream, no items

vvitlh fﬁq‘{% ncy < (1—e)- 4.
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High Dimensional Data

‘Big Data’ means not just many data points, but many measurements
per data point. l.e, very high dimensional data.
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specific interactions, how many tweets they have sent, the text
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High Dimensional Data

‘Big Data’ means not just many data points, but many measurements
per data point. l.e, very high dimensional data.
A/\—/

- Twitter has 321 million active monthly users. Records (tens of)
thousands of measurements per user: who they follow, who
follows them, when they last visited the site, timestamps for
specific interactions, how many tweets they have sent, the text
of those tweets, etc.

- A 3 minute Youtube clip with a resolution of 500 x 500 pixels at
15 frames/second with 3 color channels is a recording of > 2
billion pixel values. Even a 500 x 500 pixel color image has
750,000 pixel values.

The human genome contains 3 billion+ base pairs. Genetic
datasets often contain information on 100s of thousands+
mutations and genetic markers.



Data as Vectors and Matrices

In data analysis and machine learning, data points with many
attributes are often stored, processed, and interpreted as high
dimensional vectors, with real valued entries.



Data as Vectors and Matrices

In data analysis and machine learning, data points with many
attributes are often stored, processed, and interpreted as high
dimensional vectors, with real valued entries.
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Data as Vectors and Matrices

In data analysis and machine learning, data points with many
attributes are often stored, processed, and interpreted as high
dimensional vectors, with real valued entries.

\&J ATAGCCGTAGT m===p x=[12134432134]

0
A Y g
= S P —————
(\O\OO x= 100110111..]
X’_
=
O]

Similarities/distances between vectors
(e.g, (x,y), [Ix = yll2) have meaning for
o underlying data points.



Datasets as Vectors and Matrices

Data points are interpreted as high dimensional vectors, with real
valued entries. Data set is interpreted as a matrix.

Data Points: X;, %>, ..., X, € R
2 214200

Data Set: X € R"*? with i row equal to X.



Datasets as Vectors and Matrices

Data points are interpreted as high dimensional vectors, with real
valued entries. Data set is interpreted as a matrix.

Data Points: X;, %>, ..., X, € R
Data Set: X € R™<¢ with i row equal to X;.
\

X € Rnxd
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Datasets as Vectors and Matrices

Data points are interpreted as high dimensional vectors, with real
valued entries. Data set is interpreted as a matrix.

Data Points: X;, %>, ..., X, € R
Data Set: X € R™<¢ with i row equal to X;.

X € Rnxd

el N = 3000 images

LYPY~~~=0000

d =784 pixels

Many data point tall. Many di ions d ide.
any data points.n_ = tall. Many dimensions d = wide

<



Dimensionality Reduction

Dimensionality Reduction: Compress data points so that they lie in
many fewer dimensions.



Dimensionality Reduction

Dimensionality Reduction: Compress data points so that they lie in
many fewer dimensions.

K, €RY = %, %, € R form < d.
~
EH-— - 100110111..] —> £=[-5543.2-1]
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Dimensionality Reduction

Dimensionality Reduction: Compress data points so that they lie in
many fewer dimensions.

Xiyoo Xn€RY = %4, %, € R™ form < d.

—'x=[ 100110111...] —> =[-55432-1]

‘Lossy compression’ that still preserves important information about
the relationships between X, ..., X,.




Dimensionality Reduction

Dimensionality Reduction: Compress data points so that they lie in
many fewer dimensions.

Xiyoo Xn€RY = %4, %, € R™ form < d.

—'x=[ 100110111...] —> =[-55432-1]
_/\

‘Lossy compression’ that still preserves important information about
the relationships between X, ..., X,.
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Generally will not consider directly how Weliapproximates X:.



Dimensionality Reduction

Dimensionality reduction is one of the most important techniques in
data science. What methods have you heard of?
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Dimensionality Reduction

Dimensionality reduction is one of the most important techniques in
data science. What methods have you heard of?

- Principal component analysis

- Latent semantic analysis (LSA)

Raw Text Term Document Representation Latent Representation
N x=[0001001101101..] _%=[1.1240-5]
N % =0111010111010..] %,=[-1.4567-1]
[y e T
AN X =[1010100110100..] %,=[10.6-1-12.2]
- —

- Linear discriminant analysis

- Autoencoders



Dimensionality Reduction

Dimensionality reduction is one of the most important techniques in
data science. What methods have you heard of?

- Principal component analysis

- Latent semantic analysis (LSA)

Raw Text Term Document Representation Latent Representation
A x = 1 1101101..] #H=[1.1240-5]
-x2=[ 111010111010..] - X,=[1.4567-1]
X, =[10101 110100..] %,=[106-1-12.2]

- Linear discriminant analysis

- Autoencoders

Compressing data makes it more efficient to work with. Mw
remove extraneous information/noise.



Embeddings for Euclidean Space

Euclidean Low Distortion Embedding: Given Xi,...,X, € RY and error

parameter e > 0, find X, ..., X, € R™ (where m < d) such that for all

i,j € [n: T
(1= OIXi = Xill2 < 1% — Xill2 < (1+ €)X — X[J2-
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Embeddings for Euclidean Space

Euclidean Low Distortion Embedding: Given X;, ..., X, € R? and error
parameter e > 0, find Xy, ..., X, € R™ (where m < d) such that for all
I,J € [n]:

(1= OlIXi = X[l < [IKi = Xill> < (1+ )l1Xi = -

2|2 = /3L Z(0) X

gy

)

Recall that for Z € R",

Pythagorean theorem.
z(1)

llzll, = vz(1)? + 2(2)?

—
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Embeddings for Euclidean Space

Euclidean Low Distortion Embedding: Given X;, ..., X, € R? and error
parameter e > 0, find Xy, ..., X, € R™ (where m < d) such that for all
I,J € [n]:

(1= OlIXi = X[l < [IKi = Xill> < (1+ )l1Xi = -

d-dimensional space m-dimensional space
P (for m << d)
o [ J
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Embeddings for Euclidean Space

Euclidean Low Distortion Embedding: Given X;, ..., X, € R? and error
parameter e > 0, find Xy, ..., X, € R™ (where m < d) such that for all
I,J € [n]:

(1=K = Xlla < 1% = Xill2 < (1 + ) 1% — Xil|2.
——— ———

d-dimensional space m-dimensional space
Y (for m << d)
O$ e °

° L

° )

o, o
b=x0,A ‘/2

|7 — %ll,
Can use X1,...,%, in place of Xi,...,X, in clustering, SVM, linear

classification, near neighbor search, etc. m



Embedding with Assumptions

A very easy case: Assume that Xy, ..., X, all lie on the 15t axis in R
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Embedding with Assumptions

A very easy case: Assume that Xy, ..., X, all lie on the 15t axis in R
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Setm =1and X; = [Xi(1)] (i.e, % contains just a single number).

<% =Xl = 4/ PG() = XD = 1X() = X()] = |w\2~

f————

12



Embedding with Assumptions

A very easy case: Assume that Xy, ..., X, all lie on the 15t axis in R

Setm =1andX; = [%i(1)] (i.e, % contains just a single number).

K =Xl = /(1) = X5 = Xi(1) = X (D] = [1X; = Xl|2-
- An embedding with no distortion from any d into m = 1.

-
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Embedding with Assumptions

Assume that Xy, ... X, liein an_%@—dimensional subspace V of RY.
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Embedding with Assumptions

Assume that X3, ... X, lie in any k-dimensional subspace V of R.

NEN Q,\/

- Let V4, V,,. ..V, be an orthonormal basis for V and let V € Rk
be the matrix with these vectors as its columns.
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Embedding with Assumptions

Assume that X3, ... X, lie in any k-dimensional subspace V of R.

v, v, -3 —3
GVt Ny, 3

- Let V4, V,, ...V, be an orthonormal basis for V and let V € Rk
be the matrix with these vectors as its columns.

13



Embedding with Assumptions

Assume that X3, ... X, lie in any k-dimensional subspace V of R.

- Let V4, V,, ...V, be an orthonormal basis for V and let V € Rk
be the matrix with these vectors as its columns.

- Foralli,j we have X; —X; € V and (a good exercise!):

1Xi = Xjlla =
——
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Embedding with Assumptions

Assume that X3, ... X, lie in any k-dimensional subspace V of R.

vy X — %

(v1,%; —x;’){
-
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- Let V4, V,, ...V, be an orthonormal basis for V and let V € Rk
be the matrix with these vectors as its columns.

- Foralli,j we have X; —X; € V and (a good exercise!):

1Xi = Xjlla =
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Embedding with Assumptions

Assume that X3, ... X, lie in any k-dimensional subspace V of R.
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- Let V4, V,, ...V, be an orthonormal basis for V and let V € Rk

be the matrix with these vectors as its columns.

- Foralli,j we have X; —X; € V and (a good exercise!):

k -
1% = Fllo = | S (0% — %2 = V(% = %)l
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Embedding with Assumptions

Assume that X3, ... X, lie in any k-dimensional subspace V of R.
- Let V4, V,, ...V, be an orthonormal basis for V and let V € Rk
be the matrix with these vectors as its columns.
- For all i,j we have X; — X; € V and (a good exercise!):

k

> e % = %2 = VI(E — )]l

£=1

1Xi = Xjlla =

13



Embedding with Assumptions

Assume that X3, ... X, lie in any k-dimensional subspace V of R.
- Let V4, V,, ...V, be an orthonormal basis for V and let V € Rk
be the matrix with these vectors as its columns.
- For all i,j we have X; — X; € V and (a good exercise!):

k

> e % = %2 = VI(E — )]l

£=1

1Xi = Xjlla =

- If we setX; € RF to X; = V'X; we have:

1% = Kill2 = IVX; = VX2
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Embedding with Assumptions

Assume that X3, ... X, lie in any k-dimensional subspace V of R.
- Let V4, V,, ...V, be an orthonormal basis for V and let V € Rk
be the matrix with these vectors as its columns.
- For all i,j we have X; — X; € V and (a good exercise!):

k

> e % = %2 = VI(E — )]l

£=1

1Xi = Xjlla =

- If we setX; € RF to X; = V'X; we have:

1% = Xill2 = IV'Xi = VX[, = IVI(Xi — X))
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Embedding with Assumptions

Assume that X3, ... X, lie in any k-dimensional subspace V of R.

-— @ @00

- Let V4, V,, ...V, be an orthonormal basis for V and let V € Rk
be the matrix with these vectors as its columns.

- For all i,j we have X; — X; € V and (a good exercise!):
k

1% = %illa = | D (ve, & — 52 = V(% — %)
- If we setX; € RF to X; = V'X; we have:
foxe - R

=1 ’)Z\: E\/T SX_‘;[QJ
dx|

1% = %ill = V% = VXjll2 = [IVT(Xi = X))l = 1% — %llo-
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Embedding with Assumptions

Assume that X3, ... X, lie in any k-dimensional subspace V of R.
- Let V4, V,, ...V, be an orthonormal basis for V and let V € Rk
be the matrix with these vectors as its columns.
- For all i,j we have X; — X; € V and (a good exercise!):

k

> e % = %2 = VI(E — )]l

£=1

1Xi = Xjlla =

- If we setX; € RF to X; = V'X; we have:

1% = %illz = IVTX; = VX[l = [IVT(Xi = X)ll2 = 1% = %ill2-

n embedding with no distortion from any d into m = k.
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Embedding with Assumptions

Assume that X3, ... X, lie in any k-dimensional subspace V of R.
- Xn 1€ 1N ANy X2
- Let V4, V,, ...V, be an orthonormal basis for V and let V € Rk
be the matrix with these vectors as its columns.
- For all i,j we have X; — X; € V and (a good exercise!):

k

> e % = %2 = VI(E — )]l

£=1

1Xi = Xjlla =

- If we setX; € RF to X; = V'X; we have:
— —

1% = %illz = IVTX; = VX[l = [IVT(Xi = X)ll2 = 1% = %ill2-

- An embedding with no distortion from any d into m = k.
EVT :RY — RF is a linear map giving our embedding.
13



Embedding with No Assumptions

What about when we don’'t make any assumptions on
X1,...,Xn. le, they can be scattered arbitrarily around
d-dimensional space?

- Can we find a no-distortion embedding into m <« d
dimensions?
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Embedding with No Assumptions

What about when we don’'t make any assumptions on
X1,...,Xn. le, they can be scattered arbitrarily around
d-dimensional space?

- Can we find a no-distortion embedding into m < d
dimensions? No. Require m = d.

- Can we find an e-distortion embedding into m <« d
dimensions for e > 0?

Foralli,j: (1= e)llX; — Xjll2 < [IXi = Xjll2 < (T+ €) 1% — Xl|2.
—
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Embedding with No Assumptions

What about when we don’'t make any assumptions on
X1,...,Xn. le, they can be scattered arbitrarily around
d-dimensional space?

- Can we find a no-distortion embedding into m < d
dimensions? No. Require m = d.

. . & . .
- Can we find an e-distortion embedding into m <« d
dimensions for e > 0? Yes! Always, with m depending on e.

_——

Foralli,j: (1= e)llX; — Xjll2 < [IXi = Xjll2 < (T+ €) 1% — Xl|2.
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The Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma: For any set of points
X1,..., % € R9and e > O there exists a linearmap M : R — R™

such that m = O_('/"Eiz_”) and letting %; = NX;:

Foralli,j: (1= e)lX —Xll2 < 1% — Xjll2 < (1+ €)lIXi — Xl2-

Further, if M e R™*? has each entry chosen iid. from
N(0,1/m), it satisfies the guarantee with high probability.

15



The Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma: For any set of points
X1,..., % € R9and e > O there exists a linearmap M : R — R™
such thatm =0 ("’Eiz”) and letting X; = MNx:

Foralli,j: (1—e)lX —Xll2 < 1% — Xjll2 < (1+ €)[IX; — Xl2-

Further, if M e R™*? has each entry chosen iid. from
(0,1/m), it satisfies the guarantee with high probability.

For d = 1 trillion, e = .05, and n = 100, 000, m = 6600.
_ _

[
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The Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma: For any set of points
X1,..., % € R9and e > O there exists a linearmap M : R — R™
such thatm =0 ("’Eiz”) and letting X; = MNx:

Foralli,j: (1—e)lX —Xll2 < 1% — Xjll2 < (1+ €)[IX; — Xl2-

Further, if M e R™*? has each entry chosen iid. from
N(0,1/m), it satisfies the guarantee with high probability.

For d = 1 trillion, e = .05, and n = 100, 000, m = 6600.

Very surprising! Powerful result with a simple construction: applying
a random linear transformation to a set of points preserves
distances between all those points with high probability.
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Random Projection

Forany Xi,...,X, and M € R™<9 with each entry chosen i.i.d. from
N(0,1/m), with high probability, letting X; = MX;:

Foralli,j: (T=e)llXi = Xll2 < % = Xilla < (1+ )X — Xill2-

mxd dx1 mx1
0112 34 67 10 —.49..
—45_ 7 14 18 — 65  76..
x| =
n
f
random linear transformation
(random projection) compressed output point
(low dimensions)
logn
m=0 ( gz )
€ ol
input point
(high dimensions)
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Random Projection

Forany Xi,...,X, and M € R™<9 with each entry chosen i.i.d. from
N(0,1/m), with high probability, letting X; = MX;:

Foralli,j: (T=e)llXi = Xll2 < % = Xilla < (1+ )X — Xill2-

mxd

01 —-12 34 67 .10 —.49..

=4SN 7T S =N 65N 6 1

n
£

random linear transformation
(random projection)

logn
m=0( €? )

dx1

Xi

o

mx1

compressed output point
(low dimensions)

input point
(high dimensions)

- Mis known as a random projection. It is a random linear
function, mapping length d vectors to length m vectors.
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Random Projection

Forany Xi,...,X, and M € R™<9 with each entry chosen i.i.d. from
N(0,1/m), with high probability, letting X; = MX;:

Foralli,j: (1=elX =Xl < X = Xjll2 < (1 + €)X — Xjl|2-

mxd

01 —-12 34 67 .10 —.49..

=4SN 7T S =N 65N 6 1

n
/

random linear transformation
(random projection)

logn
m=0( €? )

dx1

Xi

Ay

mx1

compressed output point
(low dimensions)

input point
(high dimensions)

- Mis known as a random projection. It is a random linear
function, mapping length d vectors to length m vectors.

- M is data oblivious. Stark contrast to methods like PCA.
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