
COMPSCI 514: Problem Set 4

Due: Monday December 5, 11:59pm in Gradescope.

Instructions:

• You are allowed to, and highly encouraged to, work on this problem set in a group of up to
three members.

• Each group should submit a single solution set: one member should upload a pdf to
Gradescope, marking the other members as part of their group in Gradescope.

• You may talk to members of other groups at a high level about the problems but not work
through the solutions in detail together.

• You must show your work/derive any answers as part of the solutions to receive full credit.

1. Line of Best Fit (6 points)

1. (2 points) Consider invertibleA ∈ Rd×d with SVDA = UΣVT . Prove thatA−1 = VΣ−1UT .

2. (2 points) Consider any A ∈ Rn×d with SVD A = UΣVT . One of the most classic data
fitting methods, least squares regression is: given a vector y⃗ ∈ Rn, find:

β⃗∗ ∈ argmin
β⃗∈Rd

∥Aβ⃗ − y⃗∥22. (1)

The rows of A represent d-dimensional data points, the entries of y⃗ represent observations
at these points, and Aβ⃗∗ is the ‘line of best fit’, which attempts to fit these observations as
closely as possible with a linear function of the rows. Prove that β⃗∗ = VΣ−1UT y⃗ satisfies
equation (1) above. Avoid using any calculus in your proof. Hint: The solution will involve
a projection matrix.

3. (2 points) Describe in a few sentences how part (2) relates to part (1). What is ∥Aβ⃗∗ − y⃗∥22
when A is square and invertible?

2. Uncovering Graph Structure (9 points)

Consider the three graph adjacency matrices shown below. and available in the graphs.mat file.
One of these graphs is a completely random graph on 200 nodes – where each edge is added
independently with probability p1. The other is a graph with two connected components. Each
connected component is a completely random graphs on 100 nodes, where each edge is added
independently with probability p2. Finally, the third graph is a stochastic block model graph with
intra and inter community connection probabilities p3 and q3. The connection probabilities are set
so that all graphs have roughly the same average degree.
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(a) Graph A
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(b) Graph B
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(c) Graph C

1. (3 points) Identify which graph is which. Include a printout of any code you use and a plot(s)
to justify your answer. Hint: Consider reordering the nodes according to the values that
they are assigned in the second eigenvector of the adjacency matrix.

2. (3 points) In terms of p1, p2, p3, and q3, what at the largest and second largest eigenvalues
of the expected adjacency matrices of these three graphs?

3. (3 points) Use parts (1) and parts (2) to estimate the values for p1, p2, p3, and q3. Include a
printout of any that code you use.

3. The Power of Message Passing (20 points)

Consider an undirected, unweighted, d-regular graph on n nodes. I.e., a graph where every node
has degree d. Let A ∈ Rn×n be its adjacency matrix. Think of each node in the graph as a user,
and the edges as representing communication links between the users.

1. (3 points) Prove that the maximum magnitude eigenvalue of A is equal to d. Hint: First
exhibit an eigenvector with eigenvalue d. Then show that this is the maximum magnitude
eigenvalue by showing that no eigenvector can have eigenvalue > d.

2. (2 points) Prove that if the graph is disconnected then A actually has two orthogonal eigen-
vectors both with eigenvalue d. Hint: Here it just suffices to exhibit the eigenvectors and
check their corresponding eigenvalues.

3. (2 points) Prove that if the graph is bipartite then A has an eigenvector with eigenvalue
−d. Hint: Here it just suffices to exhibit this eigenvector and check that its corresponding
eigenvalue equals −d.

Consider now that setting where user has some initial value zi and they want to estimate the
average value µ = 1

n

∑n
i=1 zi. Consider the following simple distributed averaging process: each

user sets their initial estimate of the average to µ
(0)
i = zi. Then, at each step, each user sends its

current estimate of the average µ
(t)
i to all of its neighbors in the network. Each user then updates

their estimate to be the average of their neighbors’ estimates. I.e., they set µ
(t+1)
i = 1

d

∑
j∈N (i) µ

(t)
j .

Here N (i) denotes the set of neighbors of the ith node.

4. (2 points) Write this averaging process as a linear algebraic equation involving A, the vector
of estimates at time t, µ⃗(t) ∈ Rn, and the vector of estimates at time t, µ⃗(t+1) ∈ Rn.
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5. (2 points) Show that we can write µ⃗(0) = µ · 1⃗ + c2v⃗2 + . . . + cnv⃗n, where 1⃗ ∈ Rn is the all
ones vector, v⃗2, . . . , v⃗n ∈ Rn are orthonormal eigenvectors of A, which are all orthonormal to
1⃗, and c2, . . . , cn are some coefficients.

6. (2 points) Show that similarly, we can write µ⃗(t) = µ · 1⃗+
(
λ2
d

)t
c2v⃗2+ . . .+

(
λn
d

)t
cnv⃗n, where

λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of A.

7. (2 points) Argue that as long as all eigenvalues except the largest have magnitude < d, then

for all i, limt→∞ µ
(t)
i = µ. I.e., we converge to a state where all nodes know the true mean µ.

8. (2 points) By parts (2) and (3), we know that if the graph is disconnected or bipartite, then it
has multiple eigenvalues with magnitude d, and thus the above result does not hold. Describe
intuitively, why the estimates are not guaranteed to converge to the true mean µ in both
these cases.

9. (3 points) Describe and analyze a modification of the averaging protocol that leads to it
converging even when the graph is bipartite. Hint: Consider adding a self-loop to each node.

4. Graph Resistance (8 points)

Given a graph G with Laplacian L ∈ Rn×n, the effective resistance between two nodes i and j can
be defined as:

ri,j =
1

minx⃗∈Rn:xi=1,xj=0 x⃗TLx⃗
.

This is the same effective resistance you may have learned about in introductory physics, if we view
the graph as a network of unit resistors.

1. (2 points) Let z1 = 1 and zn = 0 and consider the function

f(z2, z3, . . . , zn−1) = (z1 − z2)
2 + (z2 − z3)

2 + (z3 − z4)
2 + . . .+ (zn−1 − zn)

2 .

Find a setting of the values z2, z3, . . . , zn−1 such that f(z2, z3, . . . , zn−1) = 1/(n − 1). Prove
that for all z2, z3, . . . , zn−1 ∈ R, f(z2, z3, . . . , zn−1) ≥ 1/(n− 1).

2. (2 points) Suppose the only edges in G is a path of n− 1 edges between node 1 and node n.
What is the value of r1,n?

3. (2 points) Now suppose that the edges in G consist of t paths between node 1 and node n.
These paths doesn’t share any nodes except for node 1 and node n. The paths have lengths
ℓ1, ℓ2, . . . , ℓt. What is the value of r1,n?

4. (2 points) Let ci,j be the minimum number of edges that need removed such that node i and
node j are disconnected. Prove that ri,j ≥ 1/ci,j .
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