
COMPSCI 514: Problem Set 3

Due: 11/14 by 11:59pm in Gradescope.

Instructions:

• You are allowed to, and highly encouraged to, work on this problem set in a group of up to
three members.

• Each group should submit a single solution set: one member should upload a pdf to
Gradescope, marking the other members as part of their group in Gradescope.

• You may talk to members of other groups at a high level about the problems but not work
through the solutions in detail together.

• You must show your work/derive any answers as part of the solutions to receive full credit.

1. Formulations of Low-Rank Approximation (5 points)

Prove that for any matrix A ∈ Rn×d the quantities o1, o2, o3, o4 defined below are all equal.

1. o1 = min
B∈Rn×d s.t. rank(B)≤k

∥A−B∥2F .

2. o2 = min
M∈Rn×k,N∈Rd×k

∥A−MNT ∥2F .

3. o3 = min
U∈Rn×k s.t. UTU=I

∥A− UUTA∥2F .

4. o4 = min
V ∈Rd×k s.t. V TV=I

∥A−AV V T ∥2F .

Hint 1: To formally prove that oi is equal to oj it may be helpful to argue that oi ≮ oj and also
oj ≮ oi, which implies that oi = oj .

Hint 2: You do not need to use anything about the SVD or eigendecomposition to prove that
these quantities are equivalent.

2. Inner Products for Matrices (6 points)

In this question we will show that for two matrices A ∈ Rn×d and B ∈ Rd×n the quantity tr(AB)
behaves much like the standard inner product over vectors.

1. (2 points) Prove that tr(AB) =
∑n

i=1

∑d
j=1Aij · Bji. Hint: Use the definition of matrix

multiplication.

2. (1 point) Use part (1) to prove that tr(AB) = tr(BA).
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3. (1 point) Use part (1) to prove that for any A ∈ Rn×d, tr(AAT ) = ∥A∥2F .

4. (2 points) Prove that | tr(AB)| ≤ ∥A∥F · ∥B∥F . Hint: Apply the Cauchy-Schwartz inequality
to vectors in Rnd that correspond to A and B.

3. Random Projection for Faster Matrix Multiplication (10 points)

Let π ∈ Rn be a random vector with each entry set independently to 1 with probability 1/2 and
−1 with probability 1/2. Let A ∈ Rn×d be any matrix.

1. (2 points) Show that E[ATππTA] = ATA.

Hint: Fix i, j ∈ [d] and show that E[(ATππTA)ij ] = (ATA)ij .

2. (2 points) Show that E[∥ATππTA−ATA∥2F ] ≤ 2∥A∥4F .
Hint: Fix i, j ∈ [d] and show that E[(ATππTA−ATA)2ij ] = Var((ATππTA)ij) ≤ 2∥ai∥22 ·∥aj∥22
where ai, aj ∈ Rn are the ith and jth columns of A. Then sum over all i, j ∈ [d]

3. (2 points) Let Π ∈ Rn×m be a random matrix with each entry set independently to 1/
√
m with

probability 1/2 and−1/
√
m with probability 1/2. Show that E[∥ATΠΠTA−ATA∥2F ] ≤

2∥A∥4F
m .

Hint: Show that ATΠΠTA = 1
m

∑m
t=1A

Tπtπ
T
t A, where π1, . . . , πt ∈ Rn are independent

random vectors distributed as in parts (1) and (2). Then leverage your work from part (2).

4. (2 points) Show that if m = 20
ϵ2
, then with probability at least 9/10, ∥ATΠΠTA− ATA∥F ≤

ϵ∥A∥2F .Note: Here we are looking at the Frobenius norm of ATΠΠTA−ATA, not the squared
Frobenius norm.

5. (2 points) In terms of n, d,m, what is the runtime required to compute the approximate
matrix product ATΠΠTA as compared to the exact product ATA.

4. Random Projection for Faster Low-Rank Approximation (10 points)

1. (2 points) In class we showed that for any B ∈ Rn×d, a span for the optimal rank-k subspace
to approximate B in the Frobenius norm is given by:

Z = argmin
Z∈Rd×k,s.t. ZTZ=I

∥B −BZZT ∥2F = argmaxZ∈Rd×k,s.t. ZTZ=I ∥BZ∥2F .

Show that equivalently, Z = argmaxZ∈Rd×k,s.t. ZTZ=I tr(B
TBZZT ).

Hint: Use Problems 2.3 and 2.2.

2. (2 points) Show that for any A ∈ Rn×d and C ∈ Rm×d and any Z ∈ Rd×k with orthonormal
columns, | tr(ATAZZT )− tr(CTCZZT )| ≤

√
k · ∥ATA− CTC∥F .

Hint: Use Problem 2.4 applied to the matrices (ATA− CTC) and ZZT .

3. (2 points) Use parts (1) and (2) to argue that if Z̃ = argmin
Z∈Rd×k,s.t. ZTZ=I

∥C − CZZT ∥2F then

∥A−AZ̃Z̃T ∥2F ≤
(

min
Z∈Rd×k,s.t. ZTZ=I

∥A−AZZT ∥2F
)
+ 2

√
k · ∥ATA− CTC∥F .
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4. (2 points) Let Π ∈ Rn×m be a random matrix with each entry set independently to 1/
√
m

with probability 1/2 and −1/
√
m with probability 1/2. Show that if Z̃ ∈ Rd×k contains the

top k eigenvectors of ATΠΠTA as its columns, then for m = 80k
ϵ2

, with probability ≥ 9/10,

∥A−AZ̃Z̃T ∥2F ≤
(

min
Z∈Rd×k,s.t. ZTZ=I

∥A−AZZT ∥2F
)
+ ϵ∥A∥2F .

Hint: Apply part (3) in conjunction with Problem 3.4.

5. (2 points) In terms of n, d, k, and ϵ how does the runtime of computing Z̃ in part (4) compare
to that of computing the actual top k eigenvectors of ATA (which would give an optimal
low-rank approximation of A).

5. Distinguishing Random Matrices (10 points)

Consider the four 200 × 200 random matrices shown below. They are represented as 200 × 200
images, where a pixel is lighter when an entry in the matrix is relatively large, and darker when it
is relatively small. The raw matrices can be downloaded in the four matrices.mat file from the
assignment page.

M1 M2

M3 M4

These matrices were generated from the following four distributions:

• A1: Each entry of the matrix is i.i.d. N (0, 1).

• A2: The matrix is equal to GV T where G ∈ R200×50 has i.i.d. random Gaussian entries and
V ∈ R200×50 is an orthonormal matrix.

• A3: The matrix is a mixture of the first two distributions. Specifically, it is equal to 0.1 ·
B1 + 0.9 ·B2 where B1, B2 are drawn from A1 and A2 respectively.

• A4: The matrix is generated by randomly permuting the rows and columns of the following
200× 200 pixel image of the UMass Amherst campus:
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1. (3 points) LetM ∈ Rn×d be an arbitrary matrix and let P1 ∈ Rn×n, P2 ∈ Rd×d be permutation
matrices. Prove that the singular values of P1MP2 are equal to those of M . I.e., if we change
the order of the rows and columns of M this does not affect the spectrum of the matrix.

2. (3 points) Write code to compute the singular value spectrums of each of the four matrices.
Show a plot of these spectrums and include a print out of your code.

3. (4 points) Use the spectrums computed above to match each matrix M1, . . .M4 to the distri-
bution in A1, . . . , A4 that it was generated from. Explain why the spectrum is indicative of
the distribution described.
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