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LOGISTICS

- Problem Set 1 due tomorrow at 11:59pm.

- My office hours are this evening at 5pm.
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- Space usage of O(n) bits vs. O(n - item size) for hash tables.



SUMMARY

Last Class:

- Bloom filters for storing a set with a small false positive rate.

- Space usage of O(n) bits vs. O(n - item size) for hash tables.

This Class:

- Start on streaming algorithms
- The\distinct items problem\via random hashing.

- Distinct elements in practice: Flajolet-Martin and
HyperLoglog.
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STREAMING ALGORITHMS

Stream Processing: Have a massive dataset X with n items
X1,X2,...,Xp that arrive in a continuous stream. Not nearly
enough space to store all the items (in a single location).

- Still want to analyze and learn from this data.

- Typically must compress the data on the fly, storing a data
structure from which you can still learn useful information.

- Often the compression is randomized. E.g., bloom filters.

- Compared to traditional algorithm design, which focuses on

minimizing runtime, the big question here is how much
space is needed to answer queries of interest.



SOME EXAMPLES

- Sensor data: images from telescopes (15 terabytes per night from
the Large Synoptic Survey Telescope), readings from seismometer
arrays monitoring and predicting earthquake activity, traffic
cameras and travel time sensors (Smart Cities), electrical grid
monitoring.
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DISTINCT ELEMENTS

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xn, €stimate the number of distinct elements in the
stream. E.g,

1,5,7,5,2 01— 4 distinct elements

Applications:

- Distinct IP addresses clicking on an ad or visiting a site.

- Distinct values in a database column (for estimating sizes of
joins and group bys).

- Number of distinct search engine queries.

- Counting distinct motifs in large DNA sequences.

Google Sawzall, Facebook Presto, Apache Drill, Twitter Algebird

Think Pair Share: Discuss ways you might solve this problem
without storing the full list of items seen. 5
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X1,...,Xn, €stimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

- Leth: U —[0,1] be a random hash function (with a real valued
output)
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« Fori=1,...,n
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HASHING FOR DISTINCT ELEMENTS

Min-Hashing for Distinct Elements:

* Leth: U — [0,1] be a random hash function (with a real valued output)

—o—t
h(x;) h(xs) 1

- After all items are processed, s is the minimum of d points chosen
uniformly at random on [0, 1]. Where d = # distinct elements.

* Intuition: The larger d is, the smaller we expect s to be.

+ Same idea as Flajolet-Martin algorithm and HyperlLoglog, except
they use discrete hash functions.
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PERFORMANCE IN EXPECTATION

Where d = # distinct elements.

S
—o—eo
0 h(xs) h(xy)

h(x,)

E[s] = 7 11 (using E(s) = /Oo Pr(s > x)dx) + calculus)

- So estimate of d = 1 — 1 output by the algorithm is correct if s
exactly equals its expectat|on. Does this mean E[d] = d? No, but:

- Approximation is robust: if |s — E[s]| < e E[s] for any e € (0,1/2)
and a small constant ¢ < 4:

(1—ce)d <d < (1+ce)d
_—
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INITIAL CONCENTRATION BOUND

So question is how well s concentrates around its mean.

1

el =g

s: minimum of d distinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d = % — 1: estimate of # distinct elements d.
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IMPROVING PERFORMANCE

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

+ Lethy, hy, ... hy - U —[0,1] be random hash functions

* $1,S2,...,5:=1
- Fori=1,...,n
- Forj=1,..k s; := min(s;, h:(x;
J’i;.‘-J ') (/7 j( /))
o1 .
SiI=1%2S

- Returnd =1 — 1
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Hashing for Distinct Elements:

* Lethy,hy, ... hy: U—[0,1] be random hash functions

*S$1,S2,...,S:=1
 Fori=1,...,n
- For j=1,. ,k s; := min(s;, h;(x;))
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- Setting k = 2 5, algorithm returns d with |d — a| < 4e - d with
probability at least 1 — 4.
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* Space complexity is k = ' real numbers s, Sk-



SPACE COMPLEXITY

Hashing for Distinct Elements:

* Lethy,hy, ... hy: U—[0,1] be random hash functions

*51,S2,...,5¢:=1
 Fori=1,...,n
- For j=1,. ,k s; := min(s;, h;(x;))
’ 53:%2,‘:11
'Returna:%—1
$: S S,

= — = 4
0 1

- Setting k = 2 5, algorithm returns d with |d — a| < 4e - d with
probability at least 1 — 4.

- Space complexity is k = - real numbers s;..... Sk-
=

- 6 = 5% failure rate gives a factor 20 overhead in space complexity. 13
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How can we improve our dependence on the failure rate §7?
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The median trick: Run t = O(log1/4) trials each with failure
probability 8 = 1/5 - each Using k = 5/ = 2 hash functions.
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The median trick: Run t = O(log1/4) trials each with failure
probability 6 = 1/5 - each using k = 51> = 2 hash functions.

- Letting 81, .. ,at be the outcomes of the t trials, return
d = median(ds, ..., d).
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How can we improve our dependence on the failure rate §7?
The median trick: Run t = O(log1/4) trials each with failure
probability 6 = 1/5 - each using k = 51> = 2 hash functions.

- Letting 81, .. ,at be the outcomes of the t trials, return
d = median(ds, ..., d).

median d

?15 al 3313436 32
—_——e—-e00——o-
—_— =

(1—48)d d  (1+4e)d

—_—
—_—
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IMPROVED FAILURE RATE

(_How can we improve our dependence on the failure rate 6?

The median trick: Run t = O(log1/4) trials each with failure
probability ¢ = 1/5 - each using k = 515 = 2 hash functions.

- Letting 81, .. ,at be the outcomes of the t trials, return
d = median(ds, ..., d).
>1/2
A

| |

median d

?15 al a3lA4as d;

(1-4e)d d (1+4e)d

< If > 1/2 of trials fall in [(1 — 4e€)d, (1 + 4e)d], then the median will.
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How can we improve our dependence on the failure rate §7?

The median trick: Run t = O(log1/4) trials each with failure
probability 6 = 1/5 - each using k = 51> = 2 hash functions.

- Letting 81, .. ,at be the outcomes of the t trials, return
d = median(ds, ..., d).
>1/2
A
[ \

median d

(1—4e)d d (1+4¢)d
< If > 1/2 of trials fall in [(1 — 4e€)d, (1 + 4e)d], then the median will.
* Have < 1/2 of trials on both the left and right.
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IMPROVED FAILURE RATE

How can we improve our dependence on the failure rate §7?

The median trick: Run t = O(log1/4) trials each with failure
probability 6 = 1/5 - each using k = 51> = 2 hash functions.
- Letting 81, .. ,at be the outcomes of the t trials, return
d = median(ds, ..., d).
>1/2
A
[ \
median d
a 4, a,|a,a, a,
—_—t - 4 -

(1-4e)d d (1+4e)d

< If > 2/3 of trials fall in [(1 — 4€)d, (1 + 4e)d], then the median will.
+ Have < 1/3 of trials on both the left and right.
14



THE MEDIAN TRICK

. 31, . ,at are the outcomes of the t trials, each falling in
[(1— 4e)d, (1 + 4e)d] with probability at least 4/5.

- d= median(a1, oo dp).

What is the probability that the median d falls in
[(1—4e)d, (1 + 4e)d]?
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THE MEDIAN TRICK

. 31, . ,at are the outcomes of the t trials, each falling in
[(1— 4e)d, (1 + 4e)d] with probability at least 4/5.

- d= med:an(d1, . dt).

What is the probability that the median d falls in
[(1—4e)d, (1 + 4e)d]?

* Let X be the # of trials falling in [(1 — 4¢)d, (1 + 4€)d].
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THE MEDIAN TRICK

. 31, . ,at are the outcomes of the t trials, each falling in
[(1— 4e)d, (1 + 4e)d] with probability at least 4/5.

- d= med:an(d1, . dt).

What is the probability that the median d falls in
[(1—4e)d, (1 + 4e)d]?

* Let X be the # of trials falling in [(1 — 4¢€)d, (1 + 4€)d]. E[X] = £

g

Pr (H ¢ [(1— se)d, (1 + 4e)d]) < Pr (
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THE MEDIAN TRICK

. 31, . ,at are the outcomes of the t trials, each falling in
[(1— 4e)d, (1 + 4e)d] with probability at least 4/5.

- d= median(a1, oo dp).

What is the probability that the median d falls in
[(1—4e)d, (1 + 4e)d]?
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. 31, . ,at are the outcomes of the t trials, each falling in
[(1— 4e)d, (1 + 4e)d] with probability at least 4/5.

- d= median(&, oo dp).

What is the probability that the median d falls in
[(1—4e)d, (1 + 4e)d]?

* Let X be the # of trials falling in [(1 — 4e)d, (1 + 4€)d]. E[X] = 2 - t.
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Apply Chernoff bound:

12 4
Pr <|X —E[X]| > ;E[X]) < 2%2) —0 (e ).




THE MEDIAN TRICK

. 31, . ,at are the outcomes of the t trials, each falling in
[(1— 4e)d, (1 + 4e)d] with probability at least 4/5.

- d= median(&, oo dp).

What is the probability that the median d falls in
[(1—4e)d, (1 + 4e)d]?

* Let X be the # of trials falling in [(1 — 4e)d, (1 + 4€)d]. E[X] = 2 - t.

Pr (H ¢ [(1— se)d, (1 + 4e)d]) < Pr (x < g ~E[X]) < Pr <|x —E[X]| > ;E[X]>

Apply Chernoff bound:

1 %2% —ct
Pr <|XIE[X] > 6E[X]) <2exp <2+1/6> = (e )

* Setting t = O(log(1/6)) gives failure probability e 1950/ =3 15



MEDIAN TRICK

Upshot: The median of t = O(log(1/4)) independent runs of
the hashing algorithm for distinct elements returns
d € [(1—4e)d, (1 + 4e)d] with probability at least 1 — 4.
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MEDIAN TRICK

Upshot: The median of t = O(log(1/4)) independent runs of

the hashing algorithm for distinct elements returns

d € [(1— 4e)d, (1 + 4e)d] with probability at least 1— 6.

Total Space Complexity: t trials, each using k = 25, hash

functions, for ' = 1/5. Space is 2 = O logi”‘”) real numbers

(the minimum value of each heEﬁ/funcUon ) =
O & £
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Upshot: The median of t = O(log(1/4)) independent runs of
the hashing algorithm for distinct elements returns

de [(1 — 4e)d, (1 + 4e)d] with probability at least 1— 6.

Total Space Complexity: t trials, each using k = i hash
functions, for & = 1/5. Space is 2 = <M> real numbers
(the minimum value of each hash function).

No dependence on the number of distinct elements d or the
number of items in the stream n! Both of these numbers are
typically very large.
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MEDIAN TRICK

Upshot: The median of t = O(log(1/4)) independent runs of
the hashing algorithm for distinct elements returns

de [(1 — 4e)d, (1 + 4e)d] with probability at least 1— 6.

Total Space Complexity: t trials, each using k = 25, hash
functions, for & = 1/5. Space is 5t =0 <M> real numbers
(the minimum value of each hash function).

No dependence on the number of distinct elements d or the
number of items in the stream n! Both of these numbers are
typically very large.

A note on the median: The median is often used as a robust
alternative to the mean, when there are outliers (e.g., heavy

tailed distributions, corrupted data). "



