COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2021.
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LOGISTICS

- Problem Set 1 was released on T,{uesday and is next Friday
9/24 at 8pm in Gradescope. Get started thinking over the
problems early if you can.

- See Piazza for a poll about potentially moving my office
hours time.
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Last Class: Concentration bounds beyond Markov’s inequality

- Chebyshev's inequality and the law of large numbers.
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LAST TIME

Last Class: Concentration bounds beyond Markov’s inequality
- Chebyshev's inequality and the law of large numbers.
This Time:

- Exponential concentration bounds and the central limit

-/Bloom Filters — More efficient ‘approximate’ hash tables.
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FLIPPING COINS

We flip n = 100 independent coins, each are heads with
probability 1/2 and tails with probability 1/2. Let H be the
number of heads.

n n
E[H] = = =50 and Var[H] = - =25
2 4
Markov's: ChebysheV's: In Reality:
Pr(H > 60) < .833  Pr(H >60) < .25 Pr(H > 60) = 0.0284
Pr(H>70) < .714  Pr(H>70)<.0625 Pr(H >70)=.000039
Pr(H > 80) <.625  Pr(H > 80) < .0278 Pr(H > 80) < 10~°

H has a simple Binomial distribution, so can compute these
probabilities exactly.



TIGHTER CONCENTRATION BOUNDS

To be fair.... Markov and Chebyshev's inequalities apply much more
generally than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very
general distributions?
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TIGHTER CONCENTRATION BOUNDS

To be fair.... Markov and Chebyshev's inequalities apply much more
generally than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very
general distributions?

. First Moment.

© Markov's: Pr(X > t) < %

- Chebyshev's: Pr(X — E[X]| > t) = Pr(X — E[X]|> > t?) < Vatrz[x]_
Second Moment.

- What if we just apply Markov's inequality to even higher moments?
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Pr(IX — E[X]| > t) = Pr ((X—E[X])l* > t‘*) < W

Application to Coin Flips: Recall: n = 100 independent fair coins, H is
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A FOURTH MOMENT BOUND

Consider any random variable X:

L (& (X~ EX)’]
Pr(X — E[X]| > t) } Pr ((x —E[X)" >t ) <0

S ~—~
Application to Coin Flips: Recall: n = 100 independent fair coins, H is
the number of heads.

- Bound the fourth moment: l:ﬂ"l‘}'\{lﬁ}} -
100 ~—N
E [(H E[H]) } <ZH 50> - Z CifeE[HiHHH,] = 1862.5
~= ij,R€ _—

where H; = 1if coin flip i is heads and 0 otherwise. Then apply
some messy calculations...

. . 1862.5
Apply Fourth Moment Bound: Pr(|H — E[H]| > t) < =22,




TIGHTER BOUNDS

Chebyshev's: In Reality:
Pr(H > 60) < .25 Pr(H > 60) = 0.0284
Pr(H > 70) < .0625 Pr(H > 70) = .000039
Pr(H > 80) < .04 Pr(H > 80) < 10~°
/—\—’ /’—\

[ H: total number heads in 100 random coin flips. E[H] = 50.
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TIGHTER BOUNDS

Chebyshev's: 41 Moment: In Reality:
Pr(H > 60) < .25 Pr(H > 60) < .186 Pr(H > 60) = 0.0284
Pr(H > 70) < .0625 Pr(H > 70) < .0116 Pr(H > 70) = .000039
Pr(H > 80) < .04 Pr(H > 80) < .0023 Pr(H > 80) < 10~°

Can we just keep applying Markov's inequality to higher and
higher moments and getting tighter bounds?

- Yes! To a point.
- In fact - don’t need to just apply Markov's to |X — IE[X]|'? for
some k. Can apply to any monotonic function f(|X — E[X]|).
Pr (X~ BN > ) = Pr(f (X~ EX) > 1)

[ H: total number heads in 100 random coin flips. E[H] = 50.
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Moment Generating Function: Consider for any t > 0:

% Lk k
Mi(X) = et 0E) — 5 (X —f[x])
k=0 '

- M¢(X) is monotonic for any t > 0.
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Moment Generating Function: Consider for any t > 0:
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- M¢(X) is monotonic for any t > 0.
- Weighted sum of all moments, with t controlling how slowly
the weights fall off (larger t = slower falloff).
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Moment Generating Function: Consider for any t > 0:

na -~ (X~ EX])*
Mq(X) = et *—EXD — Z B Sl v VA

- M¢(X) is monotonic for any t > 0.

- Weighted sum of all moments, with t controlling how slowly
the weights fall off (larger t = slower falloff).

- Choosing t appropriately lets one prove a number of very
powerful exponential concentration bounds (exponential tail
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EXPONENTIAL CONCENTRATION BOUNDS

Moment Generating Function: Consider for any t > 0:

Mi(K) = eU-E) — 3 “*(X—flxl)’*

k=0

- M¢(X) is monotonic for any t > 0.

- Weighted sum of all moments, with t controlling how slowly
the weights fall off (larger t = slower falloff).

- Choosing t appropriately lets one prove a number of very
powerful exponential concentration bounds (exponential tail
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EXPONENTIAL CONCENTRATION BOUNDS

Moment Generating Function: Consider for any t > 0:

Me(X) = et X-EX)) — i X —EX)"

R!
k=0

- M¢(X) is monotonic for any t > 0.

- Weighted sum of all moments, with t controlling how slowly
the weights fall off (larger t = slower falloff).

- Choosing t appropriately lets one prove a number of very
powerful exponential concentration bounds (exponential tail
bounds).

- Chernoff bound, Bernstein inequalities, Hoeffding's
inequality, Azuma'’s inequality, Berry-Esseen theorem, etc.

- We will not cover the proofs in the this class, but you will do
one on the first problem set.



BERNSTEIN INEQUALITY

MWZH0 61: 25

Bernstein Inequality: Consider independent random variables

Xi,.. Xy all fal lmg in [-M,M]. Let pu = IE[Z,“:1 Xj] and o? =
Var[zl X =321, Var[X] Forany t > |
n tt \ tz
Pr Xi—pul>t] <2exp| ——s==_
(Z ff—)— "




BERNSTEIN INEQUALITY

Bernstein Inequality: Consider independent random variables
X1, ..., Xy all falling in [-M,M]. Let p = E[>",X] and o? =
Var[>1, Xi] = "L, Var[X;]. For any t > 0:

0 2
3
[

i=1
Assume that M =1and plugint=s-o fors <o.
—t




BERNSTEIN INEQUALITY

Bernstein Inequality: Consider independent random variables
X1,...,Xp all falling in [-11]. Let p = E[>,X] and o? =
Var[>>0, Xi] = S°1L, Var[X;]. For any s > 0:

n S‘—'
Pr <ZX —ul > Srr> <2exp <> .
=1 = 4

Assume that M =1and plugint=s-o fors <o.
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Bernstein Inequality: Consider independent random variables
X1,...,Xp all falling in [-11]. Let p = E[>,X] and o? =
Var[>>0, Xi] = S°1L, Var[X;]. For any s > 0:
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BERNSTEIN INEQUALITY

Bernstein Inequality: Consider independent random variables
X1,...,Xp all falling in [-11]. Let p = E[>,X] and o? =
Var[>>0, Xi] = S°1L, Var[X;]. For any s > 0:

Pr <ZX —ul > Srr> <2exp ( 752> .
=1

Assume that M = Tand plugint=s-ofors <o.

Compare to Chebyshev's: Pr (|30 X; — u| > so) < 4.

- An exponentially stronger dependence on s!



COMPARISION TO CHEBYSHEV'S

Consider again bounding the number of heads H in n =100
independent coin flips.

Chebyshev's: Bernstein: In Reality:

Pr(H > 60) < .25 Pr(H > 60) < .15 Pr(H > 60) = 0.0284
Pr(H >70) < .0625  Pr(H>70) <.00086 Pr(H > 70) = .000039
Pr(H > 80) < .04 PrEH >80) <3~/ — Pr(H>80)<107°

A
—

H: total number heads in 100 random coin flips. E[H] = 50.

10



COMPARISION TO CHEBYSHEV'S

Consider again bounding the number of heads H in n =100
independent coin flips.

Chebyshev's: Bernstein: In Reality:
Pr(H > 60) < .25 Pr(H > 60) < .15 Pr(H > 60) = 0.0284
Pr(H >70) < .0625  Pr(H >70) <.00086 Pr(H > 70) = .000039
Pr(H > 80) < .04 Pr(H > 80) <37/ Pr(H > 80) < 107?

Getting much closer to the true probability.

H: total number heads in 100 random coin flips. E[H] = 50.

10



INTERPRETATION AS A CENTRAL LIMIT THEOREM

7

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
o? =Var[>_Xj], and s < o. Then:

s2
Pr >so | <2exp (—4).

n
in —
| =1 /
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7

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
g’ =Var[}-X] and s < 0. Then:

(o))

in —
=1
Can plot this bound for different s:
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// I \\
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Looks a lot like a Gaussian (normal) distribution
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INTERPRETATION AS A CENTRAL LIMIT THEOREM

7

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
o? =Var[>_Xj], and s < o. Then:

Pr( 250>§29xp <‘1>

n
> %
=1 —

\.

Can plot this bound for different s:

// I \\

Looks a lot like a Gaussian (normal) distribution.

N(0,0%) has density p(so) = == - ¢ s y
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N(0,0?%) has density p(so) = ——— - e~
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Exercise: Using this can show that for X ~ A/(0,0?): for any s > 0,
Pr(iX| >s-0)<2e 7.
— ==
.S /\,
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52

Pr(X| >s-0) <2 7.

Essentially the same bound that Bernstein’s inequality gives!



GAUSSIAN TAILS

N(0,0?) has density p(so) = ——— - e~

2mo

Exercise: Using this can show that for X ~ A/(0,0?): for any s > 0,

52

Pr(X| >s-0) <2 7.
Essentially the same bound that Bernstein’s inequality gives!
Central Limit Theorem Interpretation: Bernstein’s inequality gives a
quantitative version of the CLT. The distribution of the sum of

bounded independent random variables can be upper bounded with
a Gaussian (normal) distribution.




CENTRAL LIMIT THEOREM

Stronger Central Limit Theorem: The distribution of the sum of
n bounded independent random variables converges to a
Gaussian (normal) distribution as n goes to infinity.
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CENTRAL LIMIT THEOREM

Stronger Central Limit Theorem: The distribution of the sum of
n bounded independent random variables converges to a
Gaussian (normal) distribution as n goes to infinity.

70|

60)

50|
g
S 40
s
3 30|
L 20|

10|

0
39 42 45 48 51 54 57 6.0

Means

- Why is the Gaussian distribution is so important in statistics,
science, ML, etc.?

- Many random variables can be approximated as the sum of
a large number of small and roughly independent random
effects. Thus, their distribution looks Gaussian by CLT.



THE CHERNOFF BOUND

A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent
’ _NUepet
random variables Xi,...,X, taking values in {0,1}. Let tp,=
1 - _

E[> ", X]. Forany s >0
u
>ou| <2
“) _3?( 2+6>

Sx
~—

Q_‘l/
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THE CHERNOFF BOUND

A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent
random variables Xy, ..., X, taking values in {0,1}. Let p =

E[> ", X]. Forany s >0 d: )
Pr >4 <2ex ( 62” >
—_i - P 244/

As § gets larger and larger, the bound falls of exponentially fast.

n

ZX:‘*M

i=1

14



RETURN TO RANDOM HASHING

128-bit IP addresses Hash Table

172.16.254.1

R WN R

192168134

16.58.26.164. h( 16.58.26.164 j:1590

We hash m values xi, ..., xn using a random hash function into
a table with n = m entries.
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a table with n = m entries.

- le, forallj € [m]and i€ [n], Pr(h(x) = i) = % and hash
values are chosen independently.



RETURN TO RANDOM HASHING

128-bit IP addresses Hash Table
1

o 2 s
>
~
7
\ Cd

o

172.16.254.1

R WN R

192168134

16.58.26.164

h( 16582616, )= 1590

We hash m values xi, ..., xn using a random hash function into
a table with n = m entries.

- le, forallj € [m] and i € [n], Pr(h(x) = i) = .- and hash
values are chosen independently.

What will be the maximum number of items hashed into the
same location?



MAXIMUM LOAD IN RANDOMIZED HASHING

Let S; be the number of items hashed into position iand S;; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

m: total number of items hashed and size of hash table. x;, ..., xn: the items.
h: random hash function mapping xi, . . ., Xm — [m].
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MAXIMUM LOAD IN RANDOMIZED HASHING

N <o

Let S; be the number of items hashed into position iand S;; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

E[S] = Zm:E[S»',j] =m- L9

- m
51__/ -
m: total number of items hashed and size of hash table. x;, ..., xn: the items.
h: random hash function mapping xi, . . ., Xm — [m].

16



MAXIMUM LOAD IN RANDOMIZED HASHING

Let S; be the number of items hashed into position iand S;; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

m
1
E[S] = ZE[SM] =m-—=1=pu
J=1
m: total number of items hashed and size of hash table. x;, ..., xn: the items.
h: random hash function mapping xi, . . ., Xm — [m].
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MAXIMUM LOAD IN RANDOMIZED HASHING

Let S; be the number of items hashed into position iand S;; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

m
1
@:ZE[SU]:”"§:1:“'
=

By the Chernoff Bound:(for any ¢ >0, (5: 'V

=\ 2

~+ "
Pr(S,,' >1+ (5) < Pr <KZ S,‘J}’I

i=1

52
>0 p <2exp<—2+5>
v
=t 2

m: total number of items hashed and size of hash table. x;, ..., xn: the items.
h: random hash function mapping xi, . . ., Xm — [m].

16



MAXIMUM LOAD IN RANDOMIZED HASHING

CWJ\GCF———\
zn: S,"/' —1

2
> <2 — .
< ‘ﬁ>1ff£gﬁiz

W@z1+®sw<
\/

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket /. S; ;: indicator if x; is hashed to bucket i. 6: any value > 0.
17




MAXIMUM LOAD IN RANDOMIZED HASHING

M=)
26) < 2exp (_2i6>'

n
ZS,‘J —1

=1

Pr(5i21+5)gpr<

Set § = 20logm. Gives:
’_\

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket /. S; ;: indicator if x; is hashed to bucket i. 6: any value > 0.
17




MAXIMUM LOAD IN RANDOMIZED HASHING
62
>0 <2e — .
0= XD( 2%5)
\—/

2
Pd&>20mgm+4)<2ap<_;ig?ggﬂ>

~—

n
ZS,‘J —1

=1

W@z1+®sw<

Set § = 20logm. Gives:

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket /. S; ;: indicator if x; is hashed to bucket i. 6: any value > 0.
17




MAXIMUM LOAD IN RANDOMIZED HASHING

62
> <?2 — .
20 s exp( 2+5>
Set § = 20logm. Gives:

(20 log/m)? 2
> < — < — < .
s 20 108m Y <200 (5 P ) deaieiosm < o
Apply Union Bound: < &M
Pr(_maxSiZZOlongﬂ)—Pr( (S,»ZZOlogm+1)>
ie[m] ~__ T—

n
ZS,‘J —1

=1

W@z1+®sw<

>

I

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket /. S; ;: indicator if x; is hashed to bucket i. 6: any value > 0.




MAXIMUM LOAD IN RANDOMIZED HASHING
62
>0 <2e — .
0= XD( 2+5>

_ (20logm)?
2+20logm
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hashed to bucket /. S; ;: indicator if x; is hashed to bucket i. 6: any value > 0.
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MAXIMUM LOAD IN RANDOMIZED HASHING

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.
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bucket, worst case query time is O(logm).
- Using Chebyshev's inequality could only show the maximum

load is bounded by O(y/m) with good probability (good
exercise).
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MAXIMUM LOAD IN RANDOMIZED HASHING

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.

- So, even with a simple linked list to store the items in each
bucket, worst case query time is O(logm).

- Using Chebyshev's inequality could only show the maximum
load is bounded by O(y/m) with good probability (good
exercise).

- The Chebyshev bound holds even with a pairwise
independent hash function. The stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(log m).
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Questions on Exponential Concentration Bounds?

This concludes the probability foundations part of the course -
on to algorithms.
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