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LOGISTICS

- Problem set one posted this morning. Due next Friday 9/24,
at 8pm.

- Class pacing: Just right - 53/87, A bit too fast — 29/87.

- If things feel way too fast, come to my office hours or send
me an email and we can discuss how to make things more
manageable.

- Reminder: My office hours are now Thursdays 9am on Zoom.
Pratheba’s in person office hours are Mondays 12pm-1pm in
CS 207.



LAST TIME

Last Class:

- 2-Level Hashing Analysis (linearity of expectation and
Markov's inequality)

- 2-universal and pairwise independent hash functions
- Start on hashing for load balancing.

This Time:

- Finish hashing for load balancing. Motivating:

- Stronger concentration inequalities: Chebyshev's inequality,
exponential tail bounds, and their connections to the law of
large numbers and central limit theorem.

- The union bound to bound the probability that one of multiple
possible correlated events happens.



RANDOMIZED LOAD BALANCING

Randomized Load Balancing:
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- n requests randomly assigned to k servers.

- Expected load on server i is E[R]] = 7.

- By Markov's inequality, if we provision each server to handle
twice this expected load (so %” requests), it will be
overloaded with probability <1/2.



CHEBYSHEV'S INEQUALITY

With a very simple twist, Markov's inequality can be made
much more powerful.

For any random variable X and any value t > 0:
Pr(|X| > t) = Pr(X?> > t%).

X? is a nonnegative random variable. So can apply Markov's
inequality:
Chebyshev's inequality:

E[X?] var(X]

PH(X - EDRI(XZ €) = PrOC 2 ) < =2

(by plugging in the random variable X — E[X])



CHEBYSHEV'S INEQUALITY

Var[X
Pr(X—E[X]| > t) < t2[ ]
What is the probability that X falls s standard deviations from

it's mean?

Pr(IX — E[X]| > s - \/Var[X]) < m _ Siz

Why is this so powerful?

X: any random variable, t, s: any fixed numbers.




LAW OF LARGE NUMBERS

Consider drawing independent identically distributed (i.i.d.)
random variables X4, ..., X, with mean x and variance 2.

How well does the sample average S = 1 37 | X; approximate
the true mean u?

1 o 1 o 1 , o
Var[S] = Var [nlz;x,-] :nz;Var[Xi] = 5not=—

By Chebyshev's Inequality: for any fixed value € > 0,
_ Varls] _ a?

= &2  pe
Law of Large Numbers: with enough samples n, the sample

average will always concentrate to the mean.

Pr(|S — E[S]u| = €)

- Cannot show from vanilla Markov's inequality.



LOAD BALANCING VARIANCE

We can write the number of requests assigned to server i, R; as:
n

Ri=> Ry (linearity of variance)
j=1

where R;; is 1if request j is assigned to server i and 0 otherwise.
2
Var[R,-’,] =K |:(R,"}' — E[R,’J]) }

—Pr(Ri; =1)- (1= E[R])" + Pr(R;; = 0) - (0 — E[R;;])’

1 % 1 1\°
w'(“Q*(“O'(‘)‘k)
I

kR R~k '

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.




BOUNDING THE LOAD VIA CHEBYSHEVS

Letting R; be the number of requests sent to server i, E[R]] = 7
and Var[R;] < ¢.

Applying Chebyshev’s:

2n n n/k R
Pr <R, > k) < Pr<|R, E[R]| > /?) S

- Overload probability is extremely small when k < n!

- Might seem counterintuitive — bound gets worse as k grows.

- When k is large, the number of requests each server sees in
expectation is very small so the law of large numbers
doesn’t ‘kick in’.

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.




MAXIMUM SERVER LOAD

What is the probability that the exceeds
2-E[R]] = 2?” l.e., that some server is overloaded if we give
each 2! capacity?

2n 2n 2n 2n
Pr (mlax(R,») > fe) =Pr ({R1 > fe} U [Rz > I?] Uu...u [Rk > ’?D =P

We want to show that Pr (UL R > %”]) is small.

How do we do this? Note that Ry, ..., R, are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[R;] = . Var[R] = §.




THE UNION BOUND

Union Bound: For any random events Ay, Ay, ..., A,

Pr(AfUA U...UAg) < Pr(Ar) +Pr(A2) + ...+ Pr(Ag).

When Ay, ..., A, are all disjoint.

On the first problem set, you will prove the union bound, as a
consequence of Markov's inquality. 10



APPLYING THE UNION BOUND

What is the probability that the exceeds
2-E[R] = . l.e, that some server is overloaded if we give each 2
capacity?

Pr <m?X(Ri) 2 2:) =Pr (0 {Ri - 2’:D

=1
< Z Pr <[R > 2”]) (Union Bound)
= . = I?
< Z k_ (Bound from Chebyshev's)
<25

As long as k < O(y/n), with good probability, the maximum server
load will be small (compared to the expected load).

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[R;] = 2. Var[R]] = 3.

1




ANOTHER VIEW ON THIS PROBLEM

The number of servers must be small compared to the number
of requests (k = O(+/n)) for the maximum load to be bounded
in comparison to the expected load with good probability.

- There are many requests routed to a relatively small number
of servers so the load seen on each server is close to what is
expected via law of large numbers.

- A More Natural Variant: Given n requests, and assuming all
servers have fixed capacity C, how many servers should you
provision so that with probability > 99/100 no server is
assigned more than C requests?

n: total number of requests, k: number of servers randomly assigned requests. ]




Questions on union bound, Chebyshev's inequality,
random hashing?

13



FLIPPING COINS

We flip n = 100 independent coins, each are heads with
probability 1/2 and tails with probability 1/2. Let H be the
number of heads.

n n
E[H] = 5= 50 and Var[H] = P 25 —=+s.d. =5

Markov’s: Chebyshev’s: In Reality:

Pr(H>60) < .833  Pr(H > 60) < .25 Pr(H > 60) = 0.0284
Pr(H>70)< 714  Pr(H>70)<.0625  Pr(H > 70) =.000039
Pr(H >80) < .625  Pr(H > 80) < .0278 Pr(H > 80) < 10~°

H has a simple Binomial distribution, so can compute these
probabilities exactly.
14



TIGHTER CONCENTRATION BOUNDS

To be fair.... Markov and Chebyshev's inequalities apply much more
generally than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very
general distributions?

. First Moment.

* Markov's: Pr(X > t) < @

- Chebyshev's: Pr(|X — E[X]| > t) = Pr(|X — E[X]|? > ?) < Vatrzlxl_
Second Moment.

- What if we just apply Markov's inequality to even higher moments?

15



