COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2021.
Lecture 3

LOGISTICS

- Sign up for Piazza.
- Remember to complete the quiz, released after class today
and due Monday at 8pm.

- TA office hour schedules and locations have been posted
the course website.

LAST TIME

Last Class We Covered:

- Markov's inequality: the most fundamental concentration
bound. Pr(X > t- E[X]) <1/t.
- Algorithmic applications of Markov's inequality, linearity of
expectation, and indicator random variables:
- Counting collisions to estimate CAPTCHA database size.

- Counting collisions to understand the runtime of hash tables
with random hash functions.

TODAY

Today:

- Finish up random hash functions and hash tables.

- Learn about 2-level hashing.

- Learn about 2-universal and pairwise independent hash
functions.

- Start on an application of random hashing to load balancing
in distributed systems.

- Through this application learn about:
- Chebyshev's inequality, which strengthens Markov's inequality.

HASH TABLES

We store m items from a large universe in a hash table with n
positions.

128-bit IP addresses Hash Table

=1
0 skt) *

172.16.254.1

R WN e

192.168.1.34

16.58.26.164 h(16.58.26.164)= 1590

—,

- Want to show that when h : U — [n] is a random hash
function, query time is O(1) with good probability.
- Equivalently: want to show that there are few collisions
between hashed items. .

COLLISION FREE HASHING

When storing m items in a table of size n, the expected number
of pairwise collisions (two items stored in the same slots) is:

E[q] = m(r;’n_”

- For n = 4m? we have: E[C] = 771 < 1.
- By Markov's inequality there with probability at

7
least 5

0(1) query time, but we are using O(m?) space to store m
items...

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

TWO LEVEL HASHING

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

random hash
function

172.16.254.1

A WON =

192.168.1.34 : collision free O(s?) space
. I'syvalues | pash function hash table

16.58.26.164

n

- For each bucket with s; values, pick a collision free hash function
mapping [s;] — [s7]
- Just Showed: A random function is collision free with probability

> % so can just generate a random hash function and check if it is
collision free.

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: S=n+ > S’E[S]=n+ > [,
2

m
ElsT]=E || Y Tngo)=i
=

=E Z Ihe)=i * Ihx)=i | = Z E {Hh(x,):i'ﬂh(xk):i}o
Lj>kem] J,ke[m]

 Forj =k, B [Ty - Tngy Sﬂ“ﬂ%?{@ﬁ?g?i,-)z} = Prih(x) =1 = L.

- Forj#k E []Ih(x,):f ']Ih(Xk):ij| = Prih(x) = inh(xe) = 1] = 7.

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

SPACE USAGE

E[sf]=) E {Hh(x,):i ' Hh(xk):i]
jokelm]

0 W+2 m 1
o n 2) n?

m m(m —1
_m, m(n 1)
n n

<2(fwesetn=m.)
+ For j' =R, E {ﬁ(,)=i * ”h(,)7‘} = .
: FO!’] * /3, E {i|1(y(r)7‘ ih()7‘} = .

Total Expected Space Usage: (if we set n = m)

n
E[S] = n+Z]E[s,2] <n+n-2=3n=3m.
P

Near optimal space with O(1) query time!

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i. 8

EFFICIENTLY COMPUTABLE HASH FUNCTION

So Far: we have assumed a fully random hash function h(x)
with Prih(x) = i] = 1 fori € 1,...,n and h(x), h(y) independent
forx #£y.

- To compute a random hash function we have to store a table
of x values and their hash values. Would take at least O(m)
space and O(m) query time to look up h(x) if we hash m
values. Making our whole quest for O(1) query time
pointless!

x h(x)

X, | 45

x, |1004

x; | 10 |

EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

Prih(x) = h(y)] < -

.

Exercise: Rework the two level hashing proof to show that this
property is really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],
Prlh(x) = h(y)] = + (so a fully random hash function is 2-universal)

Efficient Alternative: Let p be a prime with p > |U]. Choose random
a,b € [p] with a # 0. Represent x an an integer and let

h(x)=(ax+b mod p) mod n. 0

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U — [n] is pairwise independent if for all i,j € [n]:
1

Prin() = inh() =] = —.

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?
n
. . 1
Prih(x) = h(y)] = Z Prlh(x) =inh(y)=il=n- pril
i=1
A closely related (ax +b) mod p construction gives pairwise
independence on top of 2-universality.

Remember: A fully random hash function is both 2-universal and
pairwise independent. But it is not efficiently implementable. n

Questions on Hash Tables?

12

NEXT STEP

1. We'll consider an application where our toolkit of linearity of
expectation + Markov's inequality doesn’t give much.

2. Then we'll show how a simple twist on Markov's can give a
much stronger result.

13

ANOTHER APPLICATION

Randomized Load Balancing:

s @

l 2 R_equests

/N
B AR, .. AD

o I111] (o 1111] (o 1111

Server 1 Server 2 Server k

Simple Model: n requests randomly assigned to k servers. How
many requests must each server handle?

- Often assignment is done via a random hash function. Why?

14

