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LOGISTICS

- Problem Set 5 is due Dec 13. Can be used to replace your
lowest problem set grade.

- Problem Set 4 solutions are posted.
@mis\next Thursday Dec 16, from 10:30am-12:30pm in class.

- See course website/Moodle/Piazza for exam review guide,
practice exam, additional office hours schedule.

- It would be really helpful if you could fill out SRTIs for this
class (they close Dec 18).

- http://owl.umass.edu/partners/
courseEvalSurvey/uma/.
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SUMMARY

Last Class:
@lysis of gradient descent for convex and Lipschitz functions.
This Class:

- Extend gradient descent to constrained optimization via projected
gradient descent.

- Course wrap up and review.
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CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.
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Often want to perform convex optimization with convex constraints.
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PROJECTED GRADIENT DESCENT

For any convex set let Ps(-) denote the projection function onto S.
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PROJECTED GRADIENT DESCENT

For any convex set let Ps(-) denote the projection function onto S.
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* For S being a k dimensional subspace of RY, what is Ps(})?

Projected Gradient Descent

- Choose some initialization #; and set n = Giﬁ

* Return § = argming f(6). eJe_
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CONVEX PROJECTIONS

Projected gradient descent can be analyzed identically to gradient
descent!
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PROJECTED GRADIENT DESCENT ANALYSIS
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neighbor search (locality sensitive hashing).
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Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at
massive scale — set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

- Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms. Check out 690RA if you
want to learn more.

- In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.
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Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(logn/¢?)
dimensions while preserving pairwise distances.

- Connections to the weird geometry of high-dimensional space.

- Dimensionality reduction via low-rank approximation and optimal
solution with PCA/eigendecomposition/SVD.

+ Low-rank approximation of similarity matrices and entity
embeddings (e.g,, LSA, word2vec, DeepWalk).

- Spectral graph theory — nonlinear dimension reduction and
spectral clustering for community detection.

+/ In the process covered linear algebraic tools that are very broadly
useful in ML and data science: eigendecomposition, singular value

position, projection, norm transformations.
10



CONTINUOUS OPTIMIZATION

Foundations of continuous optimization and gradient descent.



CONTINUOUS OPTIMIZATION

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.



CONTINUOUS OPTIMIZATION

Foundations of continuous optimization and gradient descent.
- Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

- How to anaW\ngt in a simple setting (convex
Lipschitz functions).



CONTINUOUS OPTIMIZATION

Foundations of continuous optimization and gradient descent.
- Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

- How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

-+ Simple extension to projected gradient descent for optimization
over a convex constraint set.



CONTINUOUS OPTIMIZATION

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

- How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

-+ Simple extension to projected gradient descent for optimization
over a convex constraint set.

- Lots that we didn’t cover: online and stochastic gradient descent,
accelerated methods, adaptive methods, second order methods
(quasi-Newton methods), practical considerations. Gave
mathematical tools to understand these methods.



Thanks for a great semester!

It felt really good to be back teaching in person,
especially with all the participation in this class.
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