COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2021.

Lecture 25 (Final Lecture!)

LOGISTICS

- Problem Set 5 is due Dec 13. Can be used to **replace** your lowest problem set grade.
- · Problem Set 4 solutions are posted.
- Exam is next Thursday Dec 16, from 10:30am-12:30pm in class.
- See course website/Moodle/Piazza for exam review guide, practice exam, additional office hours schedule.
- It would be really helpful if you could fill out SRTIs for this class (they close Dec 18).
- http://owl.umass.edu/partners/ courseEvalSurvey/uma/.

QUIZ

Question 6: was on a topic we will cover today (convex sets). It will count only as bonus.

Question 6: was on a topic we will cover today (convex sets). It will eount only as bonus.

Consider the function
$$f(\vec{\theta}) = \vec{x}^T \vec{\theta}$$
 for \vec{x} \vec{y} \vec{y}

$$\begin{array}{c|c} \text{max} & \|\nabla f(\check{o})\|_{2} \\ \hline \\ \nabla f(\check{o}) & \end{array}$$

$$= \left(\begin{array}{c} 1 \\ \times \end{array} \right) = \left(\begin{array}{c} 1 \\ 2 \\ -2 \end{array} \right)$$

SUMMARY

Last Class:

Analysis of gradient descent for convex and Lipschitz functions.

This Class:

- Extend gradient descent to constrained optimization via projected gradient descent.
- · Course wrap up and review.

GD ANALYSIS PROOF

Theorem – GD on Convex Lipschitz Functions: For convex *G*-Lipschitz function *f*, GD run with $t \ge \frac{R^2G^2}{e^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\hat{\theta}_{*,i}$ outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 1: For all
$$i, f(\vec{\theta_i}) - f(\vec{\theta_*}) \leq \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$

GD ANALYSIS PROOF

Theorem – GD on Convex Lipschitz Functions: For convex *G*-Lipschitz function f, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\underline{\hat{\theta}}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2} \Longrightarrow$

Step 2: $\frac{1}{t} \sum_{i=1}^t f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2} \angle$
 \vdots

CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

$$\vec{\theta}^* = \underset{\vec{\theta} \in \mathcal{S}}{\arg\min} f(\vec{\theta}), \qquad \qquad \text{find} \quad \vec{\theta}^* \to \mathbf{R}$$

where S is a convex set.

CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

$$\vec{\theta}^* = \underset{\vec{\theta} \in \mathcal{S}}{\operatorname{arg\,min}} f(\vec{\theta}),$$

where S is a convex set.

Definition – Convex Set: A set $S \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta}_1, \vec{\theta}_2 \in S$ and $\lambda \in [0,1]$:

$$\begin{array}{c|c}
S \subseteq \mathbb{R}^{\frac{1}{2}} & (1-\lambda)\vec{\theta}_1 + \lambda \cdot \vec{\theta}_2 \in S \\
\hline
0, +(1-\lambda)\theta_1 & \text{otherwise}
\end{array}$$

CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

$$\vec{\theta}^* = \underset{\vec{\theta} \in \mathcal{S}}{\operatorname{arg\,min}} f(\vec{\theta}),$$

where S is a convex set.

Definition – Convex Set: A set $S \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta}_1, \vec{\theta}_2 \in \mathcal{S}$ and $\lambda \in [0, 1]$:

$$\underbrace{(1-\lambda)\vec{\theta}_1 + \lambda \cdot \vec{\theta}_2}_{\text{2}} \in \mathcal{S}$$

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

$$\cdot \underbrace{P_{\mathcal{S}}(\vec{y})} = \arg\min_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} - \vec{y}\|_{2}.$$

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

- O_F
 - For any convex set let $P_S(\cdot)$ denote the projection function onto S. $^{\circ}$
 - $P_{\mathcal{S}}(\vec{y}) = \operatorname{arg\,min}_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} \vec{y}\|_2.$
 - For $S = \{\vec{\theta} \in \mathbb{R}^d : \|\vec{\theta}\|_2 \le 1\}$ what is $P_S(\vec{y})$?
 - For S being a k dimensional subspace of \mathbb{R}^d , what is $P_S(\vec{y})$?

- basis for
- 0,,0, ES 0,=Vc, Oz=Vcz
- λ_0 , + $(1-\lambda)\theta_1$ = $\sqrt{(\lambda_1 + (r\lambda)t_2)} \in S$

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

$$P_{\mathcal{S}}(\vec{y}) = \arg\min_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} - \vec{y}\|_{2}.$$

$$For \mathcal{S} = \{\vec{\theta} \in \mathbb{R}^{d} : \|\vec{\theta}\|_{2} \le 1\} \text{ what is } P_{\mathcal{S}}(\vec{y})?$$

• For S being a k dimensional subspace of \mathbb{R}^d , what is $P_S(\vec{y})$?

Projected Gradient Descent

• Choose some initialization $\vec{\theta}_1$ and set $\eta = \frac{R}{G\sqrt{t}}$.

• For
$$i = 1, ..., t - 1$$

$$\underbrace{\overrightarrow{\theta}_{i+1}^{(out)} = \overrightarrow{\theta_i} - \eta \cdot \overrightarrow{\nabla} f(\overrightarrow{\theta_i})}_{\overrightarrow{\theta_{i+1}}} = P_{\mathcal{S}}(\overrightarrow{\theta_{i+1}^{(out)}}).$$

• Return $\hat{\theta} = \arg\min_{\vec{\theta_i}} f(\vec{\theta_i})$.

CONVEX PROJECTIONS

Projected gradient descent can be analyzed identically to gradient descent!

CONVEX PROJECTIONS

Projected gradient descent can be analyzed identically to gradient descent!

Theorem – Projection to a convex set: For any convex set $S \subseteq \mathbb{R}^d$, $\vec{y} \in \mathbb{R}^d$, and $\vec{\theta} \in S$,

$$\|\underline{P_{\mathcal{S}}(\vec{y}) - \vec{\theta}}\|_2 \leq \|\vec{y} - \vec{\theta}\|_2.$$

Theorem – Projected GD: For convex *G*-Lipschitz function *f*, and convex set \mathcal{S} , Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius *R* of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq \underbrace{f(\hat{\theta}_*) + \epsilon}_{\vec{\theta} \in \mathcal{S}} = \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}) + \epsilon$$

Theorem – Projected GD: For convex *G*-Lipschitz function f, and convex set \mathcal{S} , Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon = \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}) + \epsilon$$

Recall:
$$\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$$
 and $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$.

Theorem – Projected GD: For convex *G*-Lipschitz function *f*, and convex set *S*, Projected GD run with $t \ge \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius *R* of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon = \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}) + \epsilon$$

Recall:
$$\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$$
 and $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$.

Step 1: For all $i, f(\vec{\theta}_i) - f(\vec{\theta}_*) \leq \frac{\|\vec{\theta}_i - \theta_*\|_2^2 - \|\vec{\theta}_{i+1}^{(out)} - \vec{\theta}_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Theorem – Projected GD: For convex *G*-Lipschitz function *f*, and convex set *S*, Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius *R* of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon = \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}) + \epsilon$$

Recall:
$$\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$$
 and $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$. $\|\Theta_{i+1}^{out} - \Theta_{*}\|^2$ Step 1: For all $i, f(\vec{\theta}_i) - f(\vec{\theta}_*) \le \frac{\|\vec{\theta}_i - \theta_*\|_2^2 - \|\vec{\theta}_{i+1}^{(out)} - \vec{\theta}_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$. Step 1.a: For all $i, f(\vec{\theta}_i) - f(\vec{\theta}_*) \le \frac{\|\vec{\theta}_i - \vec{\theta}_*\|_2^2 - \|\vec{\theta}_{i+1} - \vec{\theta}_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Theorem – Projected GD: For convex *G*-Lipschitz function f, and convex set \mathcal{S} , Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon = \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}) + \epsilon$$

Recall:
$$\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$$
 and $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$.

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \theta_*\|_2^2 - \|\vec{\theta}_{i+1}^{(out)} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.a: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 2:
$$\frac{1}{t} \sum_{i=1}^{t} f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{R^2}{2\eta \cdot t} + \frac{\sqrt{G^2}}{2} \implies \text{Theorem.}$$

Randomization as a computational resource for massive datasets.

Randomization as a computational resource for massive datasets.

 Focus on problems that are easy on small datasets but hard at massive scale – set size estimation, load balancing, distinct elements counting (MinHash), checking set membership (Bloom Filters), frequent items counting (Count-min sketch), near neighbor search (locality sensitive hashing).

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at massive scale – set size estimation, load balancing, distinct elements counting (MinHash), checking set membership (Bloom Filters), frequent items counting (Count-min sketch), near neighbor search (locality sensitive hashing).
- Just the tip of the iceberg on randomized streaming/sketching/hashing algorithms. Check out 690RA if you want to learn more.

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at massive scale – set size estimation, load balancing, distinct elements counting (MinHash), checking set membership (Bloom Filters), frequent items counting (Count-min sketch), near neighbor search (locality sensitive hashing).
- Just the tip of the iceberg on randomized streaming/sketching/hashing algorithms. Check out 690RA if you want to learn more.
- In the process covered probability/statistics tools that are very useful beyond algorithm design: concentration inequalities, higher moment bounds, law of large numbers, central limit theorem, linearity of expectation and variance, union bound, median as a robust estimator.

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O(\log n/\epsilon^2)$ dimensions while preserving pairwise distances.

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O(\log n/\epsilon^2)$ dimensions while preserving pairwise distances.
- · Connections to the weird geometry of high-dimensional space.

- Started with randomized dimensionality reduction and the JL lemma: compression from *any* d-dimensions to $O(\log n/\epsilon^2)$ dimensions while preserving pairwise distances.
- · Connections to the weird geometry of high-dimensional space.

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O(\log n/\epsilon^2)$ dimensions while preserving pairwise distances.
- · Connections to the weird geometry of high-dimensional space.
- Dimensionality reduction via low-rank approximation and optimal solution with PCA/eigendecomposition/SVD.
- Low-rank approximation of similarity matrices and entity embeddings (e.g., LSA, word2vec, DeepWalk).

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O(\log n/\epsilon^2)$ dimensions while preserving pairwise distances.
- · Connections to the weird geometry of high-dimensional space.
- Dimensionality reduction via low-rank approximation and optimal solution with PCA/eigendecomposition/SVD.
- Low-rank approximation of similarity matrices and entity embeddings (e.g., LSA, word2vec, DeepWalk).
- Spectral graph theory nonlinear dimension reduction and spectral clustering for community detection.

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O(\log n/\epsilon^2)$ dimensions while preserving pairwise distances.
- · Connections to the weird geometry of high-dimensional space.
- Dimensionality reduction via low-rank approximation and optimal solution with PCA/eigendecomposition/SVD.
- Low-rank approximation of similarity matrices and entity embeddings (e.g., LSA, word2vec, DeepWalk).
- Spectral graph theory nonlinear dimension reduction and spectral clustering for community detection.
- In the process covered linear algebraic tools that are very broadly useful in ML and data science: eigendecomposition, singular value decomposition, projection, norm transformations.

Foundations of continuous optimization and gradient descent.

• Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.

- Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.
- How to analyze gradient descent in a simple setting (convex Lipschitz functions).

- Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.
- How to analyze gradient descent in a simple setting (convex Lipschitz functions).
- Simple extension to projected gradient descent for optimization over a convex constraint set.

- Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.
- How to analyze gradient descent in a simple setting (convex Lipschitz functions).
- Simple extension to projected gradient descent for optimization over a convex constraint set.
- Lots that we didn't cover: online and stochastic gradient descent, accelerated methods, adaptive methods, second order methods (quasi-Newton methods), practical considerations. Gave mathematical tools to understand these methods.

Thanks for a great semester!

It felt really good to be back teaching in person, especially with all the participation in this class.

FINAL EXAM QUESTIONS/REVIEW

FINAL EXAM QUESTIONS/REVIEW

FINAL EXAM QUESTIONS/REVIEW