COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2021.

Lecture 24

LOGISTICS

- Problem Set 5 is posted. It is due 12/13. It is optional and can be used to replace your lowest problem set grade.
- Quiz due Monday, 8pm. Reminder that lowest quiz grade is dropped.
- The final will be on 12/16 from 10:30am-12:30pm. In the class.
- Final review sheet is posted under the 'Schedule Tab'. I may continue to add to this and we plan to post a practice exam(s).
- Several extra office hours will be held before the final. Times TBD.

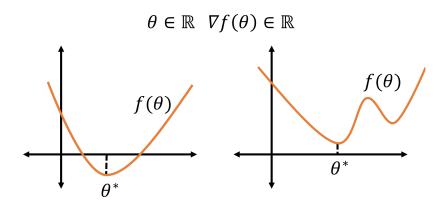
Last Class:

- · Multivariable calculus review and gradient computation.
- · Introduction to gradient descent. Motivation as a greedy algorithm.

This Class:

- Conditions under which we will analyze gradient descent: convexity and Lipschitzness.
- · Analysis of gradient descent for Lipschitz, convex functions.
- Extension to projected gradient descent for constrained optimization.

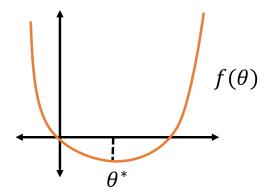
WHEN DOES GRADIENT DESCENT WORK?



Gradient Descent Update: $\vec{\theta}_{i+1} = \vec{\theta}_i - \eta \nabla f(\vec{\theta}_i)$

Definition – Convex Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0, 1]$:

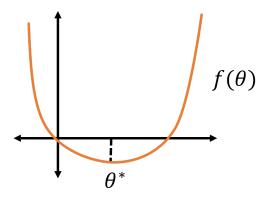
$$(1 - \lambda) \cdot f(\vec{\theta}_1) + \lambda \cdot f(\vec{\theta}_2) \ge f((1 - \lambda) \cdot \vec{\theta}_1 + \lambda \cdot \vec{\theta}_2)$$



CONVEXITY

Corollary – Convex Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0, 1]$:

$$f(\vec{\theta}_2) - f(\vec{\theta}_1) \ge \vec{\nabla} f(\vec{\theta}_1)^T \left(\vec{\theta}_2 - \vec{\theta}_1\right)$$



CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, if the step size η is chosen appropriately, gradient descent will converge to a approximate minimizer $\hat{\theta}$ with:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon = \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.$$

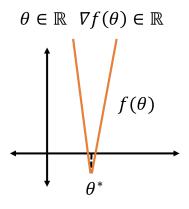
Examples: least squares regression, logistic regression, sparse regression (lasso), regularized regression, SVMS,...

Non-Convex Functions: After sufficient iterations, gradient descent will converge to a approximate stationary point $\hat{\theta}$ with:

$$\|\nabla f(\hat{\theta})\|_2 \leq \epsilon.$$

Examples: neural networks, clustering, mixture models.

LIPSCHITZ FUNCTIONS



Gradient Descent Update:

$$\vec{\theta}_{i+1} = \vec{\theta}_i - \eta \nabla f(\vec{\theta}_i)$$

Need to assume that the function is Lipschitz (size of gradient is bounded): There is some *G* s.t.:

$$\forall \vec{\theta}: \quad \|\vec{\nabla} f(\vec{\theta})\|_2 \leq G \Leftrightarrow \forall \vec{\theta_1}, \vec{\theta_2}: \quad |f(\vec{\theta_1}) - f(\vec{\theta_2})| \leq G \cdot \|\vec{\theta_1} - \vec{\theta_2}\|_2$$

WELL-BEHAVED FUNCTIONS

Definition – Convex Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0, 1]$:

$$(1-\lambda) \cdot f(\vec{\theta}_1) + \lambda \cdot f(\vec{\theta}_2) \ge f\left((1-\lambda) \cdot \vec{\theta}_1 + \lambda \cdot \vec{\theta}_2\right)$$

Corollary – Convex Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0, 1]$:

$$f(\vec{\theta}_2) - f(\vec{\theta}_1) \ge \vec{\nabla} f(\vec{\theta}_1)^{\mathsf{T}} \left(\vec{\theta}_2 - \vec{\theta}_1 \right)$$

Definition – Lipschitz Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is G-Lipschitz if $\|\vec{\nabla} f(\vec{\theta})\|_2 \leq G$ for all $\vec{\theta}$.

GD ANALYSIS - CONVEX FUNCTIONS

Assume that:

- \cdot f is convex.
- f is G-Lipschitz.
- $\|\vec{\theta}_1 \vec{\theta}_*\|_2 \le R$ where $\vec{\theta}_1$ is the initialization point.

Gradient Descent

- · Choose some initialization $\vec{\theta}_1$ and set $\eta = \frac{R}{G\sqrt{t}}$.
- For i = 1, ..., t 1
 - $\vec{\theta}_{i+1} = \vec{\theta}_i \eta \vec{\nabla} f(\vec{\theta}_i)$
- Return $\hat{\theta} = \arg\min_{\vec{\theta_1}, \dots, \vec{\theta_t}} f(\vec{\theta_i})$.

Theorem – GD on Convex Lipschitz Functions: For convex *G*-Lipschitz function f, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\hat{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$. Visually:

Theorem – GD on Convex Lipschitz Functions: For convex *G*-Lipschitz function *f*, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius *R* of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \theta_*\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$. Formally:

Theorem – GD on Convex Lipschitz Functions: For convex *G*-Lipschitz function f, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 1: For all
$$i, f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$
.

Step 1.1:
$$\vec{\nabla} f(\vec{\theta_i})^{\mathsf{T}} (\vec{\theta_i} - \vec{\theta_*}) \leq \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2} \implies \text{Step 1 by convexity.}$$

Theorem – GD on Convex Lipschitz Functions: For convex *G*-Lipschitz function f, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2} \Longrightarrow$
Step 2: $\frac{1}{t} \sum_{i=1}^{t} f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{R^2}{2n \cdot t} + \frac{\eta G^2}{2}$.

Theorem – GD on Convex Lipschitz Functions: For convex *G*-Lipschitz function f, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\hat{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 2:
$$\frac{1}{t} \sum_{i=1}^{t} f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2}$$
.

CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

$$\vec{\theta}^* = \arg\min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}),$$

where S is a convex set.

Definition – Convex Set: A set $S \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in S$ and $\lambda \in [0, 1]$:

$$(1-\lambda)\vec{\theta}_1 + \lambda \cdot \vec{\theta}_2 \in \mathcal{S}$$

E.g.
$$S = {\vec{\theta} \in \mathbb{R}^d : ||\vec{\theta}||_2 \le 1}.$$

PROJECTED GRADIENT DESCENT

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

- $P_{\mathcal{S}}(\vec{y}) = \operatorname{arg\,min}_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} \vec{y}\|_2.$
- For $S = {\vec{\theta} \in \mathbb{R}^d : ||\vec{\theta}||_2 \le 1}$ what is $P_S(\vec{y})$?
- For S being a k dimensional subspace of \mathbb{R}^d , what is $P_S(\vec{y})$?

Projected Gradient Descent

- · Choose some initialization $\vec{ heta_1}$ and set $\eta = \frac{R}{G\sqrt{t}}$
- For i = 1, ..., t 1
 - $\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$
 - $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)}).$
- Return $\hat{\theta} = \arg\min_{\vec{\theta_i}} f(\vec{\theta_i})$.

CONVEX PROJECTIONS

Projected gradient descent can be analyzed identically to gradient descent!

Theorem – Projection to a convex set: For any convex set $S \subseteq \mathbb{R}^d$, $\vec{y} \in \mathbb{R}^d$, and $\vec{\theta} \in S$,

$$||P_{\mathcal{S}}(\vec{y}) - \vec{\theta}||_2 \le ||\vec{y} - \vec{\theta}||_2.$$

Theorem – Projected GD: For convex *G*-Lipschitz function f, and convex set \mathcal{S} , Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon = \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}) + \epsilon$$

Recall:
$$\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$$
 and $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$.

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \theta_*\|_2^2 - \|\vec{\theta_{i+1}}^{(out)} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.a: For all
$$i, f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$
.

Step 2:
$$\frac{1}{t} \sum_{i=1}^t f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2} \implies$$
 Theorem.