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LOGISTICS

- Problem Set 5 is posted. It is due 12/13. It is optional and
can be used to replace your lowest problem set grade.

- Quiz due Monday, 8pm. Reminder that lowest quiz grade is
dropped.

- The final will be on 12/16 from 10:30am-12:30pm. In the class.

- Final review sheet is posted under the 'Schedule Tab’ | may
continue to add to this and we plan to post a practice
exam(s).

- Several extra office hours will be held before the final. Times
TBD.



SUMMARY

Last Class:

- Multivariable calculus review and gradient computation.
- Introduction to gradient descent. Motivation as a greedy algorithm.
This Class:
- Conditions under which we will analyze gradient descent:
convexity and Lipschitzness.
- Analysis of gradient descent for Lipschitz, convex functions.

* Extension to projected gradient descent for constrained
optimization.



WHEN DOES GRADIENT DESCENT WORK?
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Gradient Descent Update: 6, = 6; — nVf(0;)



CONVEXITY

Definition — Convex Function: A function f: R — R is convex
if and only if, for any 6,6, € RY and X € [0,1]:

(1= X)fB) + A f@) = F((1=2) - 61+ A 6)
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CONVEXITY

Corollary - Convex Function: A function f: R? — R is convex if
and only if, for any 6,6, € R? and X € [0,1]:
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CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, if the step size i is
chosen appropriately, gradient descent will converge to a
approximate minimizer 4 with:

—

f(B) < f(0.) + e = minf(6) +e.

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMS,...

Non-Convex Functions: After sufficient iterations, gradient descent
will converge to a approximate stationary point 8 with:

IVfB)]2 < e

Examples: neural networks, clustering, mixture models.



LIPSCHITZ FUNCTIONS
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Need to assume that the function is Lipschitz (size of gradient

is bounded): There is some G st
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WELL-BEHAVED FUNCTIONS

Definition — Convex Function: A function f: R — R is convex
if and only if, for any 6,6, € RY and X € [0,1]:

(1= X)fB) + A f@) = F((1=2) - 61+ A 6)

Corollary - Convex Function: A function f: R? — R is convex if
and only if, for any 6,6, € R? and X € [0,1]:

— —

f8:) - 1(6) = VG (6 - )

Definition - Lipschitz Function: A function f : RY — R is G-
Lipschitz if || VA(8), < G for all 6.




GD ANALYSIS — CONVEX FUNCTIONS

Assume that:

- fis convex.

- flis G-Lipschitz.

- |67 — 6.2 < R where 6; is the initialization point.
Gradient Descent

R

- Choose some initialization ; and set n=;
- Fori=1,...,t—1
: é;+1 = 97 - Uﬁf(é;)

%

—

+ Return @ = argmin;  ; f(6)).



GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > g iterations, n =

R
— A W’
and starting point within radius R of 6,, outputs 6 satisfying:

f(6) < f(8.) +e.
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Step 1: For all i, f(6;) — f(6.) < "0’_9*“5_2119f'1_9*‘|% + ’7762 Visually:



GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > g iterations, n =

R
— A W’
and starting point within radius R of 6,, outputs 6 satisfying:

f(6) < f(8.) +e.

. J

Step 1: For alli, f(6;) — f(6.) < "0’_9*“5_2119f'1_9*‘|% + 128 Formally:
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GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > g iterations, n =

R
— A 6\7['
and starting point within radius R of 6,, outputs 6 satisfying:

f9) < fi6.) +e.

N o T g2 g a2
Step 1: For all i, f(6)) — f(6,) < 19=2=1i lee,q 6.l 4 ”TGZ

Step 11: Vf(6)'(6] — 6.) < VI=0liclf=0:li | 08" . Step 1 by
convexity.



GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > g iterations, n =

R
— A 6\7['
and starting point within radius R of 6,, outputs 6 satisfying:

f(9) < f(6.) + e
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GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > g iterations, n =

R
— A W’
and starting point within radius R of 6,, outputs 6 satisfying:

f(6) < f(8.) +e.

. J

Step 2: 1 Y1, f(0) —fl0.) < £ + %5~
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CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

g = argminf(f),
des

where S is a convex set.

Definition — Convex Set: A set S C RY is convex if and only if,
forany 6;,6, € Sand A € [0,1]:

(1=Nb+X-6, eS8

Eg S={0eR?:|d], <1}
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PROJECTED GRADIENT DESCENT

For any convex set let Ps(-) denote the projection function onto S.

* Ps(¥) = argming_ |16 — ¥ll..
- ForS = {6 e R : 4], < 1} what is Ps(})?

- For S being a k dimensional subspace of RY, what is Ps(V)?

Projected Gradient Descent

- Choose some initialization ; and set 5 = ci\/z‘

s Fori=1,...,t—1

é(i?t = 97' - nﬁf(é})

S
\_/

- Return § = argming f(6;
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CONVEX PROJECTIONS

Projected gradient descent can be analyzed identically to gradient
descent!

Theorem - Projection to a convex set: For any convex set S C
RY JeRY andf e s,

IPs(¥) = 6l < |IY - 6ll..
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PROJECTED GRADIENT DESCENT ANALYSIS

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > &£ jterations, n = %,

€2

and starting point within radius R of d,, outputs @ satisfying:

f(6) < f(6.) + e = minf(8) + ¢
0eS

.

Recall: 6%, = 0 — - Vf(d) and 6. = Ps(5[%}").

Step 1: For all i, f(6) — f(6.
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Step 1.a: For alli, f(6) — f(d,) < 10—t 2,@9’“ Pl 4 ng,

Step 2: 1320 f(6) — f(0,) < % + @ = Theorem.



