COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2021.

Lecture 22

LOGISTICS

- · Problem Set 4 due December 1.
- · No quiz this week.
- We're going to start on optimization after break. And just cover a bit less material.

SUMMARY

Last Class:

- Efficient algorithms for SVD/eigendecomposition.
- · Start on iterative methods: intuition behind the power method.

This Class:

- · Finish power method analysis.
- Krylov subspace methods.
- Connections to random walks and Markov chains.

Power Method: The most fundamental iterative method for approximate SVD/eigendecomposition. Applies to computing k = 1 eigenvectors, but can be generalized to larger k.

Goal: Given symmetric $\mathbf{A} \in \mathbb{R}^{d \times d}$, with eigendecomposition $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$, find $\vec{\mathbf{Z}} \approx \vec{\mathbf{V}}_1$ – the top eigenvector of \mathbf{A} .

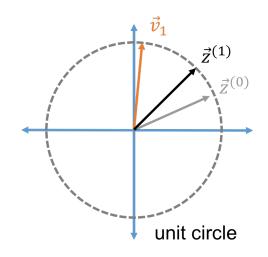
· Initialize: Choose $\vec{z}^{(0)}$ randomly. E.g. $\vec{z}^{(0)}(i) \sim \mathcal{N}(0,1)$.

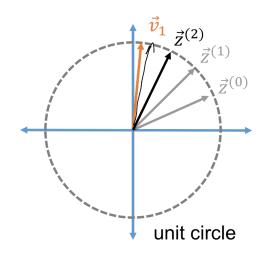
For
$$i = 1, ..., t$$

$$\begin{array}{l}
\vdots \ \vec{z}^{(i)} := A \cdot \vec{z}^{(i-1)} \\
\vdots \ \vec{z}^{(i)} := \frac{\vec{z}^{(i)}}{\|\vec{z}^{(i)}\|_2}
\end{array}$$

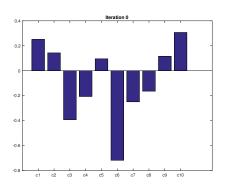
$$\begin{array}{l}
\text{Return } \vec{z}^{(i)} = 1, ..., t \\
\text{Compute } \vec{z}^{(i)} = \frac{\vec{z}^{(i)}}{\|\vec{z}^{(i)}\|_2}
\end{array}$$

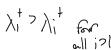




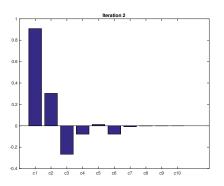


$$\underline{\vec{z}^{(0)}} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \underline{\lambda}_1^t \vec{v}_1 + c_2 \underline{\lambda}_2^t \vec{v}_2 + \dots + c_d \underline{\lambda}_d^t \vec{v}_d$$

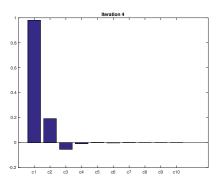




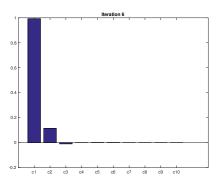
$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \ldots + c_d \lambda_d^t \vec{v}_d$$



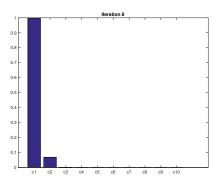
$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \ldots + c_d \lambda_d^t \vec{v}_d$$

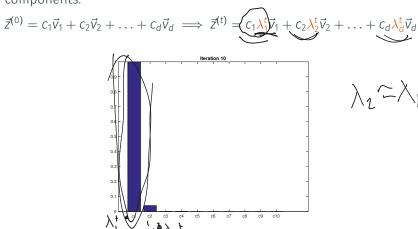


$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \ldots + c_d \lambda_d^t \vec{v}_d$$



$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \ldots + c_d \lambda_d^t \vec{v}_d$$





$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \dots + c_d \lambda_2^t \vec{v}_d$$
Write $|\lambda_2| = (1 - \gamma)|\lambda_1|$ for 'gap' $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$.

How many iterations t does it take to have $|\lambda_2|^t \le \frac{1}{e} \cdot |\lambda_1|^t$?

$$(1 - \gamma) \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_d \lambda_2^t \vec{v}_d$$

$$(1 - \gamma) \vec{v}_1 + c_2 \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \dots + c_d \lambda_2^t \vec{v}_d$$

$$(1 - \gamma) \vec{v}_1 + c_2 \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \dots + c_d \lambda_2^t \vec{v}_d$$

$$(1 - \gamma) \vec{v}_1 + c_2 \vec{v}_1 + c_2 \lambda_2^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \dots + c_d \lambda_2^t \vec{v}_d$$

$$(1 - \gamma) \vec{v}_1 + c_2 \vec{v}_1 + c_2 \lambda_2^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \dots + c_d \lambda_2^t \vec{v}_d$$

$$(1 - \gamma) \vec{v}_1 + c_2 \vec{v}_1 + c_2 \lambda_2^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \dots + c_d \lambda_2^t \vec{v}_d$$

$$(1 - \gamma) \vec{v}_1 + c_2 \vec{v}_1 + c_2 \lambda_2^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \dots + c_d \lambda_2^t \vec{v}_d$$

$$(1 - \gamma) \vec{v}_1 + c_2 \vec{v}_1 + c_2 \lambda_2^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \dots + c_d \lambda_2^t \vec{v}_d$$

$$(1 - \gamma) \vec{v}_1 + c_2 \vec{v}_1 + c_2 \lambda_2^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \dots + c_d \lambda_2^t \vec{v}_d$$

$$(1 - \gamma) \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_d \lambda_2^t \vec{v}_d$$

$$(1 - \gamma) \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_d \lambda_2^t \vec{v}_d$$

$$(1 - \gamma) \vec{v}_1 + c_2 \vec{v}_1 + c_2 \lambda_2^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_d$$

$$(1 - \gamma) \vec{v}_1 + c_2 \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + c_2 \lambda_2^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + c_2 \lambda_2^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + c_2 \lambda_2^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + c_2 \lambda_2^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + c_$$

$$\vec{Z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{Z}^{(t)} = \underbrace{c_1 \lambda_1^t}_{|\lambda_1|} \vec{v}_1 + \underbrace{c_2 \lambda_2^t}_{|\lambda_2|} \vec{v}_2 + \ldots + c_d \lambda_2^t \vec{v}_d$$
Write $|\lambda_2| = (1 - \gamma)|\lambda_1|$ for 'gap' $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$.

How many iterations t does it take to have $|\lambda_2|^t \leq \frac{1}{e} \cdot |\lambda_1|^t$? $1/\gamma$.

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \frac{\lambda_1^t}{1} \vec{v}_1 + c_2 \frac{\lambda_2^t}{2} \vec{v}_2 + \ldots + c_d \frac{\lambda_2^t}{2} \vec{v}_d$$
Write $|\lambda_2| = (1 - \gamma)|\lambda_1|$ for 'gap' $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$.

How many iterations t does it take to have $|\lambda_2|^t \leq \frac{1}{\rho} \cdot |\lambda_1|^t$? $1/\gamma$.

How many iterations t does it take to have $|\lambda_2|^t \leq \underline{\delta} \cdot |\lambda_1|^t$?

many iterations
$$t$$
 does it take to have $|\lambda_{2}|^{t} \leq \underline{\delta} \cdot |\lambda_{1}|^{t}$?

$$\begin{vmatrix}
\lambda_{1} & \lambda_{1} & \lambda_{2} \\
\lambda_{2} & \lambda_{1} & \lambda_{2}
\end{vmatrix}$$

$$\begin{vmatrix}
\lambda_{1} & \lambda_{2} & \lambda_{1} \\
\lambda_{2} & \lambda_{1} & \lambda_{2}
\end{vmatrix}$$

$$\begin{vmatrix}
\lambda_{1} & \lambda_{2} & \lambda_{1} \\
\lambda_{2} & \lambda_{2}
\end{vmatrix}$$

$$\begin{vmatrix}
\lambda_{1} & \lambda_{2} & \lambda_{1} \\
\lambda_{2} & \lambda_{2}
\end{vmatrix}$$

$$\begin{vmatrix}
\lambda_{1} & \lambda_{2} & \lambda_{1} \\
\lambda_{2} & \lambda_{2}
\end{vmatrix}$$

$$\begin{vmatrix}
\lambda_{1} & \lambda_{2} & \lambda_{1} \\
\lambda_{2} & \lambda_{2}
\end{vmatrix}$$

$$\begin{vmatrix}
\lambda_{1} & \lambda_{2} & \lambda_{1} \\
\lambda_{2} & \lambda_{2}
\end{vmatrix}$$

$$\begin{vmatrix}
\lambda_{1} & \lambda_{2} & \lambda_{2} \\
\lambda_{2} & \lambda_{2}
\end{vmatrix}$$

$$\begin{vmatrix}
\lambda_{1} & \lambda_{2} & \lambda_{2} \\
\lambda_{2} & \lambda_{2}
\end{vmatrix}$$

$$\begin{vmatrix}
\lambda_{1} & \lambda_{2} & \lambda_{2} \\
\lambda_{2} & \lambda_{2}
\end{vmatrix}$$

 $A \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $A = V\Lambda V^T$. \vec{v}_1 : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_1 .

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \frac{\lambda_1^t}{1} \vec{v}_1 + c_2 \frac{\lambda_2^t}{2} \vec{v}_2 + \ldots + c_d \frac{\lambda_2^t}{2} \vec{v}_d$$
Write $|\lambda_2| = (1 - \gamma)|\lambda_1|$ for 'gap' $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$.

How many iterations t does it take to have $|\lambda_2|^t \leq \frac{1}{e} \cdot |\lambda_1|^t$? $1/\gamma$.

How many iterations t does it take to have $|\lambda_2|^t \leq \delta \cdot |\lambda_1|^t$? $\frac{\ln(1/\delta)}{\gamma}$.

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \underbrace{\lambda_1^t}_{l_1} \vec{v}_1 + c_2 \underbrace{\lambda_2^t}_{l_2} \vec{v}_2 + \ldots + c_d \underbrace{\lambda_2^t}_{l_2} \vec{v}_d$$
 Write $|\lambda_2| = (1 - \gamma)|\lambda_1|$ for 'gap' $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$. How many iterations t does it take to have $|\lambda_2|^t \le \frac{1}{e} \cdot |\lambda_1|^t$? $1/\gamma$. How many iterations t does it take to have $|\lambda_2|^t \le \delta \cdot |\lambda_1|^t$? $\frac{\ln(1/\delta)}{\gamma}$. Will have for all $i > 1$, $|\lambda_i|^t \le |\lambda_2|^t \le \delta \cdot |\lambda_1|^t$.

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = \underbrace{c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \ldots + c_d \lambda_2^t \vec{v}_d}_{\text{Write } |\lambda_2| = (1 - \gamma)|\lambda_1| \text{ for 'gap' } \gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}.$$

How many iterations t does it take to have $|\lambda_2|^t \leq \frac{1}{e} \cdot |\lambda_1|^t$? $1/\gamma$.

How many iterations t does it take to have $|\lambda_2|^t \leq \delta \cdot |\lambda_1|^t$? $\frac{\ln(1/\delta)}{\gamma}$.

Will have for all i > 1, $|\lambda_i|^t \le |\lambda_2|^t \le \delta \cdot |\lambda_1|^t$.

How small must we set δ to ensure that $c_1\lambda_1^t$ dominates all other components and so $\vec{z}^{(t)}$ is very close to \vec{v}_1 ?

Claim: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = \underbrace{\left(c_1\vec{v}_1 + c_2\vec{v}_2 + \ldots + c_d\vec{v}_d\right)}_{Corollary:}$ with very high probability, for all i: $\underbrace{\left(\int_{-1}^{1} z^{(1)} + c_2\vec{v}_2 + \ldots + c_d\vec{v}_d\right)}_{O(1/d^2)} \le |c_i| \le O(\log d),$ Corollary: $\underbrace{\left(\int_{-1}^{1} z^{(1)} + c_2\vec{v}_2 + \ldots + c_d\vec{v}_d\right)}_{O(1/d^2)} \le |c_i| \le O(d^2 \log d).$ $\underbrace{\left(\int_{-1}^{1} z^{(1)} + c_2\vec{v}_2 + \ldots + c_d\vec{v}_d\right)}_{O(1/d^2)} \le O(d^2 \log d).$

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_j \left| \frac{c_j}{c_1} \right| \leq O(d^2 \log d)$.

Claim 2: For gap $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_1^t}{\lambda_1^t}\right| \leq \delta$ for all i.

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_j \left| \frac{c_j}{c_1} \right| \leq O(d^2 \log d)$.

Claim 2: For gap $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_1^t}{\lambda_1^t}\right| \leq \delta$ for all i.

$$\vec{z}^{(t)} := \frac{\underline{c_1 \lambda_1^t \vec{v}_1 + \ldots + \underline{c_d \lambda_d^t \vec{v}_d}}}{\|c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d\|_2}$$

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_j \left| \frac{c_j}{c_1} \right| \leq O(d^2 \log d)$.

Claim 2: For gap $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_i^t}{\lambda_1^t}\right| \leq \delta$ for all i.

$$\vec{z}^{(t)} := \frac{c_1 \lambda_1^t \vec{v}_1 + \dots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1 + \dots + c_d \lambda_d^t \vec{v}_d\|_2} \implies \vec{z}^t \\
\|\vec{z}^{(t)} - \vec{v}_1\|_2 \le \left\| \frac{c_1 \lambda_1^t \vec{v}_1 + \dots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1\|_2} - \vec{v}_1 \right\|_2$$

 $A \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $A = VAV^T$. \vec{v}_1 : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_1 .

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_j \left| \frac{c_j}{c_1} \right| \leq O(d^2 \log d)$.

Claim 2: For gap $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_1^t}{\lambda_1^t}\right| \leq \delta$ for all i.

$$\vec{Z}^{(t)} := \frac{c_1 \lambda_1^t \vec{V}_1 + \dots + c_d \lambda_d^t \vec{V}_d}{\|c_1 \lambda_1^t \vec{V}_1 + \dots + c_d \lambda_d^t \vec{V}_d\|_2} \implies \frac{\|\vec{Z}^{(t)} - \vec{V}_1\|_2}{\|c_1 \lambda_1^t \vec{V}_1 + \dots + c_d \lambda_d^t \vec{V}_d\|_2} = \frac{\|\vec{C}_1 \lambda_1^t \vec{V}_1\|_2}{\|c_1 \lambda_1^t \vec{V}_1\|_2} = \frac{\vec{V}_1}{\|c_1 \lambda_1^t \vec{V}_1\|_2} - \vec{V}_1 \|_2}{\|c_1 \lambda_1^t \vec{V}_1\|_2} = \frac{\vec{V}_1}{\|c_1 \lambda_1^t \vec{V}_1\|_2} + \dots + \frac{\vec{V}_d \lambda_d^t}{|c_1 \lambda_1^t \vec{V}_d|_2} + \dots + \frac{\vec{V}_d \lambda_d^t}{|c_1 \lambda_1^t \vec{V}_d|_2} = \frac{\vec{V}_1}{|c_1 \lambda_1^t \vec{V}_d|_2} + \dots + \frac{\vec{V}_d \lambda_d^t \vec{V}_d}{|c_1 \lambda_1^t \vec{V}_d|_2} + \dots + \frac{\vec{V}_d \lambda_d^t \vec{V}_d}{|c_1 \lambda_1^t \vec{V}_d|_2} = \frac{\vec{V}_1}{|c_1 \lambda_1^t \vec{V}_d|_2} + \dots + \frac{\vec{V}_d \lambda_d^t \vec{V}_d}{|c_1 \lambda_1^t \vec{V}_d|_2} + \dots + \frac{\vec{V}_d \lambda_d^t \vec{V}_$$

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_j \left| \frac{c_j}{c_1} \right| \leq O(d^2 \log d)$.

Claim 2: For gap
$$\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$$
, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_1^t}{\lambda_1^t}\right| \leq \delta$ for all i .
$$\vec{z}^{(t)} := \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d\|_2} \Longrightarrow$$

$$\|\vec{z}^{(t)} - \vec{v}_1\|_2 \leq \left\|\frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1\|_2} - \vec{v}_1\right\|_2$$

$$= \left\|\frac{c_2 \lambda_2^t}{c_1 \lambda_1^t} \vec{v}_2 + \ldots + \frac{c_d \lambda_d^t}{\lambda_1^t} \vec{v}_d\right\|_2 = \left|\frac{c_2 \lambda_2^t}{c_1 \lambda_1^t}\right| + \ldots + \left|\frac{c_d \lambda_d^t}{\lambda_1^t}\right|$$

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_i \left| \frac{c_i}{c_i} \right| \leq O(d^2 \log d)$

Claim 2: For gap
$$\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$$
, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_i^t}{\lambda_i^t}\right| \leq \delta$ for all i .

$$\vec{z}^{(t)} := \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d\|_2} \Longrightarrow$$

$$\|\underline{\vec{z}^{(t)}} - \underline{\vec{v}_1}\|_2 \le \left\| \frac{c_1 \lambda_1^t \vec{v}_1 + \dots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1\|_2} - \underline{\vec{v}_1} \right\|_2$$

$$= \left\| \frac{c_2 \lambda_2^t}{c_1 \lambda_1^t} \vec{v}_2 + \ldots + \frac{c_d \lambda_d^t}{\lambda_1^t} \vec{v}_d \right\|_2 = \left| \frac{c_2 \lambda_2^t}{c_1 \lambda_1^t} \right| + \ldots + \left| \frac{c_d \lambda_d^t}{\lambda_1^t} \right| \leq \underline{\delta} \cdot O(d^2 \log d) \left(d^2 \log d \right) \left(d^2 \log d \right) \left(d^2 \log d \right)$$

$$+ \frac{c_d \lambda_d^t}{c_1 \lambda_1^t} \vec{v}_d + \ldots + \frac{c_d \lambda_d^t}{c_d \lambda_d^t} \vec{v}_d + \ldots + \frac{c_d \lambda_d^t}{c_d \lambda_d^t} \right| \leq \underline{\delta} \cdot O(d^2 \log d) \left(d^2 \log d \right) \left(d^2 \log d \right) \left(d^2 \log d \right)$$

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d, \text{ with very high probability,}$ $\max_j \left| \frac{c_j}{c_1} \right| \leq O(d^2 \log d).$

Claim 2: For gap
$$\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$$
, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_i^t}{\lambda_1^t}\right| \leq \delta$ for all i .

$$\vec{Z}^{(t)} := \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d\|_2} \implies$$

$$\|\vec{z}^{(t)} - \vec{v}_1\|_2 \le \left\| \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1\|_2} - \vec{v}_1 \right\|_2$$

$$= \left\| \frac{c_2 \lambda_2^t}{c_1 \lambda_1^t} \vec{V}_2 + \ldots + \frac{c_d \lambda_d^t}{\lambda_1^t} \vec{V}_d \right\|_2 = \left| \frac{c_2 \lambda_2^t}{c_1 \lambda_1^t} \right| + \ldots + \left| \frac{c_d \lambda_d^t}{c_1 \lambda_1^t} \right| \le \delta \cdot O(d^2 \log d) \cdot d.$$

$$\text{Setting } \underline{\delta} = O\left(\frac{\epsilon}{d^3 \log d}\right) \text{ gives } \underline{\|\vec{Z}^{(t)} - \vec{V}_1\|_2} \le \epsilon.$$

 $A \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $A = V\Lambda V^T$. \vec{v}_1 : top eigenvec-Ytor, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_1 .

POWER METHOD THEOREM

Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$ be the relative gap between the first and second eigenvalues. If Power Method is initialized with a random Gaussian vector $\vec{v}^{(0)}$ then, with high probability, after $t = O\left(\frac{\ln(d/\epsilon)}{\gamma}\right)$ steps:

$$\|\vec{z}^{(t)} - \vec{v}_1\|_2 \leq \epsilon.$$

Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$ be the relative gap between the first and second eigenvalues. If Power Method is initialized with a random Gaussian vector $\vec{v}^{(0)}$ then, with high probability, after $t = O\left(\frac{\ln(d/\epsilon)}{\gamma}\right)$ steps:

$$\|\vec{z}^{(t)} - \vec{v}_1\|_2 \leq \epsilon.$$
 with A

Total runtime: O(t) matrix-vector multiplications. If $A = X^TX$:

$$O\left(\underbrace{\operatorname{nnz}(\mathbf{X})} \cdot \underbrace{\frac{\operatorname{ln}(d/\epsilon)}{\gamma}}\right) = O\left(\underbrace{\operatorname{nd}} \cdot \underbrace{\frac{\operatorname{ln}(d/\epsilon)}{\gamma}}\right). \quad O\left(\bigcap_{k=1}^{\infty} \underbrace{\bigcap_{k=1}^{\infty} \operatorname{ND}}\right)$$

Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$ be the relative gap between the first and second eigenvalues. If Power Method is initialized with a random Gaussian vector $\vec{v}^{(0)}$ then, with high probability, after $t = O\left(\frac{\ln(d/\epsilon)}{\gamma}\right)$ steps:

$$\underbrace{\|\vec{z}^{(t)} - \vec{v}_1\|_2} \leq \epsilon.$$

Total runtime: O(t) matrix-vector multiplications. If $A = X^TX$:

$$O\left(\operatorname{nnz}(\mathbf{X})\cdot \frac{\ln(d/\epsilon)}{\gamma}\cdot\right) = O\left(nd\cdot \frac{\ln(d/\epsilon)}{\gamma}\right).$$

How is ϵ dependence? — syman 5 - 30

How is γ dependence? - not great

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need $t = O\left(\frac{\ln(d/\epsilon)}{\sqrt{2}}\right)$ steps for the same guarantee.

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need $t = O\left(\frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$ steps for the same guarantee.

Main Idea: Need to separate λ_1 from λ_i for $i \geq 2$.

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need $t = O\left(\frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$ steps for the same guarantee.

Main Idea: Need to separate λ_1 from λ_i for $i \geq 2$.

· Power method: power up to λ_1^t and λ_i^t .

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need $t = O\left(\frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$ steps for the same guarantee.

Main Idea: Need to separate λ_1 from λ_i for $i \geq 2$.

- Power method: power up to λ_1^t and λ_i^t . $\Upsilon(x)=x^{\frac{1}{2}}$
- Krylov methods: apply a better degree t polynomial $T_t(\cdot)$ to the eigenvalues to separate $T_t(\lambda_1)$ from $T_t(\lambda_i)$.

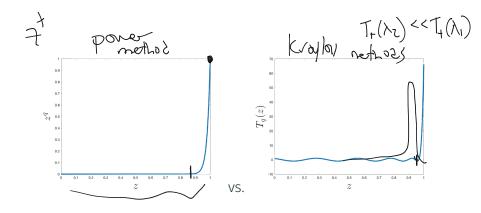
Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need $t = O\left(\frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$ steps for the same guarantee.

Main Idea: Need to separate λ_1 from λ_i for $i \geq 2$.

- · Power method: power up to λ_1^t and λ_i^t .
- Krylov methods: apply a better degree t polynomial $T_t(\cdot)$ to the eigenvalues to separate $T_t(\lambda_1)$ from $T_t(\lambda_i)$.
- Still requires just t matrix vector multiplies. Why?

$$T_{+}(A) = C_{+}A^{\dagger} + C_{+}$$



Optimal 'jump' polynomial in general is given by a degree *t* Chebyshev polynomial. Krylov methods find a polynomial tuned to the input matrix that does at least as well.

GENERALIZATIONS TO LARGER *k*

Block Power Method (a.k.a. Simultaneous Iteration, Subspace Iteration, or Orthogonal Iteration)

Standard Krylov methods (i.e., svds/eigs)

Block Krylov methods

Runtime:
$$O\left(ndk \cdot \frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$$

to accurately compute the top *k* singular vectors.

GENERALIZATIONS TO LARGER **k**

- Block Power Method (a.k.a. Simultaneous Iteration, Subspace Iteration, or Orthogonal Iteration)
- Standard Krylov methods (i.e., svds/eigs)
- · Block Krylov methods

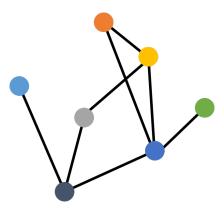
Runtime:
$$O\left(ndk \cdot \frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$$

to accurately compute the top *k* singular vectors.

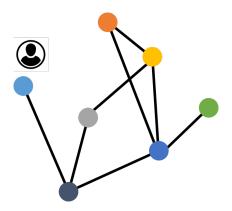
'Gapless' Runtime:
$$O\left(ndk \cdot \frac{\ln(d/\epsilon)}{\sqrt{\epsilon}}\right)$$

if you just want a set of vectors that gives an ϵ -optimal low-rank approximation when you project onto them.

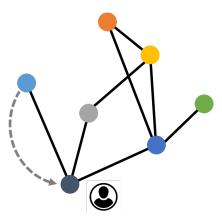
Connection Between Random Walks, Eigenvectors, and Power Method

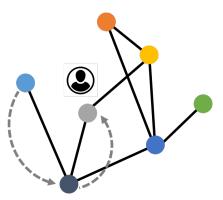


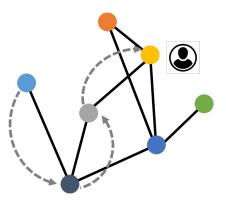
Consider a random walk on a graph G with adjacency matrix A.



At each step, move to a random vertex, chosen uniformly at random from the neighbors of the current vertex.







Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node } i \text{ at step } t)$.

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node i at step t})$.

• Initialize: $\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node } i \text{ at step } t)$.

- Initialize: $\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$
- · Update:

$$Pr(walk at i at step t) = \sum_{j \in neigh(i)} Pr(walk at j at step t-1) \cdot \frac{1}{degree(j)}$$

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node } i \text{ at step } t)$.

- Initialize: $\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$
- · Update:

Pr(walk at i at step t) =
$$\sum_{j \in neigh(i)}$$
 Pr(walk at j at step t-1) $\cdot \frac{1}{degree(j)}$ = $\vec{z}^T \vec{p}^{(t-1)}$

where $\vec{z}(j) = \frac{1}{degree(j)}$ for all $j \in neigh(i)$, $\vec{z}(j) = 0$ for all $j \notin neigh(i)$.

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node i at step t})$.

- Initialize: $\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$
- · Update:

Pr(walk at i at step t) =
$$\sum_{j \in neigh(i)} Pr(walk \text{ at } j \text{ at step t-1}) \cdot \frac{1}{degree(j)}$$
$$= \vec{z}^T \vec{p}^{(t-1)}$$

where $\vec{z}(j) = \frac{1}{degree(j)}$ for all $j \in neigh(i)$, $\vec{z}(j) = 0$ for all $j \notin neigh(i)$.

• \vec{z} is the i^{th} row of the right normalized adjacency matrix AD^{-1} .

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node } i \text{ at step } t)$.

- Initialize: $\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$
- · Update:

$$\text{Pr(walk at i at step t)} = \sum_{j \in neigh(i)} \text{Pr(walk at j at step t-1)} \cdot \frac{1}{degree(j)}$$

$$= \vec{z}^T \vec{p}^{(t-1)}$$

where $\vec{z}(j) = \frac{1}{degree(j)}$ for all $j \in neigh(i)$, $\vec{z}(j) = 0$ for all $j \notin neigh(i)$.

- \vec{z} is the i^{th} row of the right normalized adjacency matrix AD^{-1} .
- $\vec{p}^{(t)} = AD^{-1}\vec{p}^{(t-1)}$

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node } i \text{ at step } t)$.

- Initialize: $\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$
- · Update:

Pr(walk at i at step t) =
$$\sum_{j \in neigh(i)} Pr(walk \text{ at } j \text{ at step t-1}) \cdot \frac{1}{degree(j)}$$
$$= \vec{z}^T \vec{p}^{(t-1)}$$

where $\vec{z}(j) = \frac{1}{degree(j)}$ for all $j \in neigh(i)$, $\vec{z}(j) = 0$ for all $j \notin neigh(i)$.

• \vec{z} is the i^{th} row of the right normalized adjacency matrix AD^{-1} .

•
$$\vec{p}^{(t)} = AD^{-1}\vec{p}^{(t-1)} = \underbrace{AD^{-1}AD^{-1}...AD^{-1}}_{t \text{ times}} \vec{p}^{(0)}$$

Claim: After t steps, the probability that a random walk is at node i is given by the i^{th} entry of

$$\vec{p}^{(t)} = \underbrace{AD^{-1}AD^{-1}\dots AD^{-1}}_{t \text{ times}} \vec{p}^{(0)}.$$

Claim: After t steps, the probability that a random walk is at node i is given by the i^{th} entry of

$$\vec{p}^{(t)} = \underbrace{AD^{-1}AD^{-1} \dots AD^{-1}}_{t \text{ times}} \vec{p}^{(0)}.$$

$$D^{-1/2}\vec{p}^{(t)} = \underbrace{(D^{-1/2}AD^{-1/2})(D^{-1/2}AD^{-1/2}) \dots (D^{-1/2}AD^{-1/2})}_{t \text{ times}} (D^{-1/2}\vec{p}^{(0)}).$$

Claim: After t steps, the probability that a random walk is at node i is given by the i^{th} entry of

$$\vec{p}^{(t)} = \underbrace{AD^{-1}AD^{-1}\dots AD^{-1}}_{\text{t times}} \vec{p}^{(0)}.$$

$$D^{-1/2}\vec{p}^{(t)} = \underbrace{(D^{-1/2}AD^{-1/2})(D^{-1/2}AD^{-1/2})\dots (D^{-1/2}AD^{-1/2})}_{\text{t times}} (D^{-1/2}\vec{p}^{(0)}).$$

• $D^{-1/2}\vec{p}^{(t)}$ is exactly what would obtained by applying t/2 iterations of power method to $D^{-1/2}\vec{p}^{(0)}$!

Claim: After t steps, the probability that a random walk is at node i is given by the i^{th} entry of

$$\vec{p}^{(t)} = \underbrace{AD^{-1}AD^{-1}\dots AD^{-1}}_{t \text{ times}} \vec{p}^{(0)}.$$

$$D^{-1/2}\vec{p}^{(t)} = \underbrace{(D^{-1/2}AD^{-1/2})(D^{-1/2}AD^{-1/2})\dots (D^{-1/2}AD^{-1/2})}_{t \text{ times}} (D^{-1/2}\vec{p}^{(0)}).$$

- $\mathbf{D}^{-1/2}\vec{p}^{(t)}$ is exactly what would obtained by applying t/2 iterations of power method to $\mathbf{D}^{-1/2}\vec{p}^{(0)}$!
- Will converge to the top eigenvector of the normalized adjacency matrix $\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}$. Stationary distribution.

Claim: After t steps, the probability that a random walk is at node i is given by the i^{th} entry of

$$\vec{p}^{(t)} = \underbrace{AD^{-1}AD^{-1}\dots AD^{-1}}_{\text{t times}} \vec{p}^{(0)}.$$

$$D^{-1/2}\vec{p}^{(t)} = \underbrace{(D^{-1/2}AD^{-1/2})(D^{-1/2}AD^{-1/2})\dots (D^{-1/2}AD^{-1/2})}_{\text{t times}} (D^{-1/2}\vec{p}^{(0)}).$$

- $\mathbf{D}^{-1/2}\vec{p}^{(t)}$ is exactly what would obtained by applying t/2 iterations of power method to $\mathbf{D}^{-1/2}\vec{p}^{(0)}$!
- Will converge to the top eigenvector of the normalized adjacency matrix $\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}$. Stationary distribution.
- Like the power method, the time a random walk takes to converge to its stationary distribution (mixing time) is dependent on the gap between the top two eigenvalues of $D^{-1/2}AD^{-1/2}$. The spectral gap.

A small spectral gap for $D^{-1/2}AD^{-1/2}$ corresponds to a small second smallest eigenvalue for the normalized Laplacian $D^{-1/2}LD^{-1/2}$. Why?

Why does this make sense intuitively given what we know about the second smallest eigenvalue of the Laplacian?