COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2021.
Lecture 22



LOGISTICS

- Problem Set 4 due December 1.
- No quiz this week.

- We're going to start on optimization after break. And just
cover a bit less material.



SUMMARY

Last Class:

- Efficient algorithms for SVD/eigendecomposition.

- Start on iterative methods: intuition behind the power method.
This Class:

* Finish power method analysis.

- Krylov subspace methods.
-?Connections to random walks and Markov chains.



POWER METHOD

Power Method: The most fundamental iterative method for
approximate SVD/eigendecomposition. Applies to computing
kR = 1 eigenvectors, but can be generalized to larger k. XTK

Goal: Given symmetric A € R*9 with eigendecomposition
A = VAV, find Z ~ v - the top eigenvector of A,

- Initialize: Choose Z(9 randomly. E.g. Z9(i) ~ A(0,1).
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v; much larger, relative to the other
th),v)
components. H\\%
Z(O) = C1\_/'q + C2\72 + ...+ Cdvd — z(t) = C1)\%\71 + Cz)\g\_/} + ...+ Cd)\g\_/'d
+
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v; much larger, relative to the other
components.
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Iteration 2
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v; much larger, relative to the other
components.
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v; much larger, relative to the other
components.

Z(O) = C1\_/'q + C2\72 + ...+ Cdvd — z(t) + CZ)\EVZ +... .+ Cd)\g\_/'d
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POWER METHOD CONVERGENCE RATE

Vi

rr
2(0) = C1\71 + C2\72 + ...+ CdVd = Z(t) C1/\Wﬁ1 Cz/\t 4+ ...+ Cd/\§\7d

Write [\o| = (1 — 7)|\| for ‘gap’ v = Ral=lal
2 [N = (1= )|\ for ‘'gap’ y = iy

How many iterations t does it take to have |A;[' < < - |Aq]'?
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A € RY*%: input matrix with eigendecomposition A = VAV'. V;: top eigenvec-
tor, being computed, Z0: iterate at step i, converging to .




POWER METHOD CONVERGENCE RATE
Z(O) = C1\71 +C2\72+...+Cd\7d — Z 5@1 +C2t ;P -+Cd/\§\7d

Write [Az = (1 — )| M| for ‘gap’ v = Ww‘ﬁz :

How many iterations t does it take to have [\[' < 2 - [\[7? 1/4.

A € RY*%: input matrix with eigendecomposition A = VAV'. V;: top eigenvec-
tor, being computed, Z0: iterate at step i, converging to .




POWER METHOD CONVERGENCE RATE

Z(O) = C1\71 + C2\72 + ...+ CdVd = Z(t) = C1/\§\71 + Cz/\g\72 + ...+ Cd/\§\7d
. ‘ ’ A=A

Write |Ay| = (1 —~)|A| for ‘gap’ = Rulxl WI‘M‘I 2l

How many iterations t does it take to have [\[' < 1 - [\[7? 1/4.

How many iterations t does it take to have [Ao|" < g - M2
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A € RY*%: input matrix with eigendecomposition A = VAV'. V;: top eigenvec-
tor, being computed, Z0: iterate at step i, converging to .




POWER METHOD CONVERGENCE RATE

Z(O) = C1\71 + C2\72 + ...+ CdVd = Z(t) = C1/\§\71 + Cz/\g\72 + ...+ Cd/\§\7d

Write || = (1= )|i] for ‘gap’ 7 = 2ilcbel

How many iterations t does it take to have [\[' < 1 - [\[7? 1/4.

How many iterations t does it take to have |\|t <6 - |\]t? in@/9),

~
.

A € RY*%: input matrix with eigendecomposition A = VAV'. V;: top eigenvec-
tor, being computed, Z0: iterate at step i, converging to .




POWER METHOD CONVERGENCE RATE

[ g d
X £ Y
Z(O) = C1\71 + C2\72 + ...+ CdVd — Z(t) = C]&V] + C2A5\72 + ...+ CC&Vd

. ‘ ’ A=A

Write |Ay| = (1 —~)|A| for ‘gap’ = ul=lxl WI‘M‘I 2l

How many iterations t does it take to have [\[' < 1 - [\[7? 1/4.
How many iterations t does it take to have |\|t <6 - |\]t? %.

Will have forall i > 1, |Ni]E < [\t < 8- 0]t
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A € RY*%: input matrix with eigendecomposition A = VAV'. V;: top eigenvec-
tor, being computed, Z0: iterate at step i, converging to .




POWER METHOD CONVERGENCE RATE

Z(O) = C1\71 + C2\72 + ...+ CdVd — Z(t) :@m\% + Cz/\t2\72 + ...+ Cd/\§\7d
\_/

M| =[]

Write [\ = (1—)|M| for ‘gap’ v = =15

How many iterations t does it take to have [\[' < 1 - [\[7? 1/4.
How many iterations t does it take to have |\|t <6 - |\]t? %.
Will have forall i > 1, |Ni]E < [\t < 8- 0]t

How small must we set 6 to ensure that c;\} dominates all other
components and so 21 is very close to v;?

A € RY*%: input matrix with eigendecomposition A = VAV'. V;: top eigenvec-
tor, being computed, Z0: iterate at step i, converging to .




RANDOM INITIALIZATION

Claim: When z9 is chosen with random Gaussian entries, writing
70 =y + "0Vt +£¢\7d, with very high probability, for all i

¢ 4\/,, 2 0(1/d%) < |cj| < O(logd)
Corollary: “\J(p ) - =
< 0(d? log d). loy e

max

(Do

A € RY*%: input matrix with eigendecomposition A = VAV'. V;: top eigenvec-
tor, being computed, Z0: iterate at step i, converging to .




RANDOM INITIALIZATION

Claim 1: When z(® is chosen with random Gaussian entries, writing
70 = c1\71 + GV + . .. + C4Vy, with very high probability,
max; | & ] < O(c? logd)

Claim 2: For gap v = ‘A“l‘ ‘ﬁ” and t = n0/9) ’i—ﬁ’ < ¢ forall i.
- -~ 7 1
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A € R9*d: input matrix with eigendecomposition A = VAV'. V;: top eigenvec-
tor, being computed, Z(): iterate at step i, converging to ;. 8




RANDOM INITIALIZATION

Claim 1: When z(® is chosen with random Gaussian entries, writing
70 = Vi 4+ 6oV + . .. + c4Vy, with very high probability,
ma; ]C ] < O(d? logd)

~ X
At C1/\%V1—|—...—|—Cd’£\dvd
HC1/\%V1 + ...+ Cd/\ngHZ

Claim 2: For gap v = ‘A“l‘ 2ol and t = (L/‘s), ’A—t’ < ¢ forall i.

—

A € R9*d: input matrix with eigendecomposition A = VAV'. V;: top eigenvec-
tor, being computed, Z(): iterate at step i, converging to ;. 8




RANDOM INITIALIZATION

Claim 1: When z(® is chosen with random Gaussian entries, writing
70 = Vi 4+ 6oV + . .. + c4Vy, with very high probability,
ma&’6’<(Xdzmgd)

X X
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Claim 2: For gap v = ‘A“l‘ 2ol and t = (L/‘s), ’A—t’ < ¢ forall i.

. NV + ..+ g LYy
120 ", < |[SAB T F Gl g
_ lciA Va2 5

m{“m

[

—

A € R9*d: input matrix with eigendecomposition A = VAV'. V;: top eigenvec-
tor, being computed, Z(): iterate at step i, converging to ;. 8




RANDOM INITIALIZATION

Claim 1: When z(® is chosen with random Gaussian entries, writing
70 = Vi 4+ 6oV + . .. + c4Vy, with very high probability,
ma; ]C ] < O(d? logd)

Claim 2: For gap v = ‘A“l‘ “M and t = (L/‘s), ’i;
:

Z(t) . C1/\g\71 + ...+ Cd/\dvd
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A € R9*d: input matrix with eigendecomposition A = VAV'. V;: top eigenvec-
tor, being computed, Z(): iterate at step i, converging to ;.




RANDOM INITIALIZATION

Claim 1: When z(® is chosen with random Gaussian entries, writing
70 = Vi 4+ 6oV + . .. + c4Vy, with very high probability,
ma; ]C ] < O(d? logd)

Claim 2: For gap v = ‘A“l‘ “M and t = (L/‘s), ’i;
:
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A € R9*d: input matrix with eigendecomposition A = VAV'. V;: top eigenvec-
tor, being computed, Z(): iterate at step i, converging to ;.




RANDOM INITIALIZATION

Claim 1: When z(® is chosen with random Gaussian entries, writing
7200 = ¢V + oV + ... + CqVy, With very high probability,

max; |2 | < 0(dlogd). _
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A € R9*d: input matrix with eigendecomposition A = VAV'. V;: top eigenvec-
tor, being computed, Z(): iterate at step i, converging to ;.




RANDOM INITIALIZATION

Claim 1: When z(® is chosen with random Gaussian entries, writing
7200 = ¢V + oV + ... + CqVy, With very high probability,
ax; H < O(d? logd).
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A € R9%9: input matrix with eigendecomposition A = VAV'. ¥: top eigenvec-/
tor, being computed, Z(): iterate at step i, converging to ;. 8




POWER METHOD THEOREM

Theorem (Basic Power Method Convergence)

Letv = W be the relative gap between the first and second

eigenvalues. If Power Method is initialized with a random Gaussian
vector V) then, with high probability, after t = O (%) steps:

17 =]l <e.



POWER METHOD THEOREM

Theorem (Basic Power Method Convergence)

Letv = W be the relative gap between the first and second
eigenvalues. If Power Method is initialized with a random Gaussian
vector V) then, with high probability, after t = O (l”(d/f ) steps:

||Z(t) - \71H2 S €.
T

Total runtime: O(t) matrix-vector mult|pl|cat|ons IfA=XX:
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POWER METHOD THEOREM

Theorem (Basic Power Method Convergence)

Letv = W be the relative gap between the first and second
eigenvalues. If Power Method is initialized with a random Gaussian
vector V) then, with high probability, after t = O (%) steps:

129 =]l <e.

Total runtime: O(t) matrix-vector multiplications. If A = X'X:

0 (nnz(X) . ln(i/e)) =0 <nd . ln@:/ﬁ)) .

How is e dependence? — 8\@ 5%8’

How is v dependence? — /\0,\' 5‘/&,4\‘
R



KRYLOV SUBSPACE METHODS

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need

_ In(d/e)
t=0 (&> steps for the same guarantee.

10
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Main Idea: Need to separate \; from \; for i > 2.
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KRYLOV SUBSPACE METHODS

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need

t=0 (%) steps for the same guarantee.

Main Idea: Need to separate \; from \; for i > 2.

3<+
- Power method: power up to A} and AL TGO
— ~—

- Krylov methods: apply a better degree t polynomial T¢(-) to
the eigenvalues to separate T¢(A1) from T¢())).

10



KRYLOV SUBSPACE METHODS

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need

t=0 (%) steps for the same guarantee.

Main Idea: Need to separate \; from \; for i > 2.

- Power method: power up to A} and AL
- Krylov methods: apply a better degree t polynomial_Tt\(-_) to

the eigenvalues to separate T¢(A1) from T¢())).
- Still requires just t matrix vector multiplies. Why?
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KRYLOV SUBSPACE METHODS

X
T.00) <L)
W
3( :P e l(‘/ O‘i \ (\Qj{ﬂ,ﬁ%
M v )

Optimal ‘jump’ polynomial in general is given by a degree t
Chebyshev polynomial. Krylov methods find a polynomial
tuned to the input matrix that does at least as well.



GENERALIZATIONS TO LARGER R

J—
(_Block Power Method (a.k.a. Simultaneous Iteration, ]
Subspace Iteration, or Orthogonal Iteration) b

Standard Krylov methods (i.e, svds/eigs) -k
+[ Block Krylov methods %\

Runtime: O (ndl?- l”g%”)
N’ ~

to accurately compute the top k singular vectors.



GENERALIZATIONS TO LARGER R

- Block Power Method (a.k.a. Simultaneous Iteration,
Subspace Iteration, or Orthogonal Iteration)

- Standard Krylov methods (i.e, svds/eigs)
- Block Krylov methods

Runtime: O (ndl?- l”g%”)

to accurately compute the top k singular vectors.

‘Gapless’ Runtime: O (ndl? : %)

if you just want a set of vectors that gives an e-optimal
low-rank approximation when you project onto them.



Connection Between Random Walks,
Eigenvectors, and Power Method



CONNECTION TO RANDOM WALKS

Consider a random walk on a graph G with adjacency matrix A.



CONNECTION TO RANDOM WALKS

Consider a random walk on a graph G with adjacency matrix A.

®

At each step, move to a random vertex, chosen uniformly at
random from the neighbors of the current vertex.
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Consider a random walk on a graph G with adjacency matrix A.
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CONNECTION TO RANDOM WALKS

Let f®) € R have i entry 5 = Pr(walk at node i at step t).
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CONNECTION TO RANDOM WALKS

Let f®) € R have i entry 5 = Pr(walk at node i at step t).

- Initialize: 5® =[1,0,0,...,0].
+ Update:

1

Pr(walk at i at step t) = Z Pr(walk at j at step t-1) - degree())

j€neigh(i)



CONNECTION TO RANDOM WALKS

Let 5® € R" have ith entry ) = Pr(walk at node i at step t).
!

- Initialize: 5® =[1,0,0,...,0].

+ Update:
Pr(walk atiatstept)= Y Pr(walkatjatstep t-1)- 1
( PY= L P degree())
jeneigh(i)
Z p (t—1)

where Z(j) = for allj € neigh(i), Z(j) = 0 for all j ¢ neigh(i).

degree
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- Zis the i row of the right normalized adjacency matrix AD~".



CONNECTION TO RANDOM WALKS

Let f®) € R have i entry 5 = Pr(walk at node i at step t).

- Initialize: 5® =[1,0,0,...,0].

+ Update:
Pr(walk atiatstept)= Y Pr(walkatjatstep t-1)- 1
PU= 2 P degree())
jeneigh(i)
Z p (t—1)

where Z(j) = for allj € neigh(i), Z(j) = 0 for all j ¢ neigh(i).

degree

- Zis the i row of the right normalized adjacency matrix AD~".

. 5(t) — AD—15(t—W)



CONNECTION TO RANDOM WALKS

Let f®) € R have i entry 5 = Pr(walk at node i at step t).

- Initialize: 5® =[1,0,0,...,0].

+ Update:
Pr(walk atiatstept)= Y Pr(walkatjatstep t-1)- 1
PU= 2 P Gegree())
jeneigh(i)
Z p (t—1)

where Z(j) = for allj € neigh(i), Z(j) = 0 for all j ¢ neigh(i).

degree

- Zis the i row of the right normalized adjacency matrix AD~".

_1_,

- p = AD 5= = AD~'AD" .. p

ttimes




RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is
given by the i entry of

p® =AD"'AD"...AD' 5,

t times
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matrix D~'/2AD~"/2, Stationary distribution.
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RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is
given by the i entry of

p® =AD"'AD"...AD' 5,

t times

D—1/2ﬁ(t) — (D—1/2AD—W/2)(D—W/ZAD—1/2) o (D—T/ZAD—1/2)(D—1/25(0)).

ttimes

- D725 is exactly what would obtained by applying t/2 iterations
of power method to D~"/2p(9)1

- Will converge to the top eigenvector of the normalized adjacency
matrix D~'/2AD~"/2, Stationary distribution.

- Like the power method, the time a random walk takes to converge
to its stationary distribution (mixing time) is dependent on the gap

between the top two eigenvalues of D~'/2AD~"/2. The spectral gap.
16



RANDOM WALKING AS POWER METHOD

A small spectral gap for D~/2AD~"/2 corresponds to a small
second smallest eigenvalue for the normalized Laplacian
D—'/2LD~/2. Why?

Why does this make sense intuitively given what we know
about the second smallest eigenvalue of the Laplacian?

17



