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LOGISTICS

- Problem Set 4 will be released in the next few days and due
November 30th.

. Pr%will be some form of optional extra credit.

- I will have office hours after class today from 2:30-3:30pm in
(CS234.
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SUMMARY

Last Class: Spectral Clustering

- Spectral clustering: finding good cuts via Laplacian eigenvectors.

+ The second smallest eigenvector can be used to find a small but
balanced cut.

* Heuristic argument, no formal proofs.



SUMMARY

Last Class: Spectral Clustering

- Spectral clustering: finding good cuts via Laplacian eigenvectors.

+ The second smallest eigenvector can be used to find a small but
balanced cut.

* Heuristic argument, no formal proofs.
This Class: The Stochastic Block Model

- A simple clustered graph model where we can prove the
@ectiveness of spectral clustering (i.e., clustering with the
Laplacian eigenvectors)



REVIEW

For a graph with adjacency matrix A and degree matrix D,L=D — A is
the graph Laplacian.
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How smooth any vector Vis over the graph can be measured by:
A > (0 - 1) 717 NESE
. (1)) eE
NE) =
- The second smallest eigenvector vV,_q of L, minimizes V! _,LvV,_;
subject to V! _,1=0. -
J_)a

- By thresholding this vector, we tend to find S@q Cjts YH”‘ A s
small), that are well-balanced (vV7_,T = 0). -1 5 L3 9
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QUIZ QUESTION 5
- - \ :
a4 v glky=1n
Consider the unweighted graph G shown below and let L be its
graph Laplacian. Let X =([1 —2, —4). What is X' LX?
S ~ S

Hint: You don't need to explicitly write down L.

[1-1 -1 -1]



CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing (
\
Vp-1= argmin VLV all o elts
veRdwith ||7]|=1, V" 1=0 2 Jeenl w304,
Set S to be all nodes with V,_4(i) < 0, T to be all with \V oe LN
Vn_1(i) > 0.
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CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

Vg = argmin VRY
veRdwith ||7]|=1, V=0

Set S to be all nodes with V,_4(i) < 0, T to be all with

N .
Va—1(i) > 0.
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STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model): Let G,(p, q) be a
distribution over graphs on n nodes, split randomly into two groups
B and C, each with n/2 nodes.
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Stochastic Block Model (Planted Partition Model): Let G,(p, q) be a
distribution over graphs on n nodes, split randomly into two groups
B and C, each with n/2 nodes.

+ Any two nodes in the same group are connected with probability p
(including self-loops).
+ Any two nodes in different groups are connected with prob. g < p.

- Connections are independent.
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Stochastic Block Model (Planted Partition Model): Let G,(p, q) be a

distribution over graphs on n nodes, split randomly into two groups
B and C, each with n/2 nodes.

+ Any two nodes in the same group are connected with probability p
(including self-loops).

+ Any two nodes in different groups are connected with prob. g < p.
- Connections are independent.




LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from Gu(p, q).

- Let A € R"*" be the adjacency matrix of G, ordered in terms
of group ID.

B C
(n/2 nodes)  (n/2 nodes)
|

(n/2 nodes)

Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.
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Let G be a stochastic block model graph drawn from Gu(p, q).

- Let A € R"*" be the adjacency matrix of G, ordered in terms

of group ID.
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Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.




EXPECTED ADJACENCY MATRIX

nxn
Letting G be a stochastic block model graph drawn from  [JL

Gn(p,q) and A € R"™" be its adjacency matrix. What is E[A]?
.

Ehy=p e e ey
Voo n SR grps

Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.




EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R™" be its adjacency matrix. (E[A]);; = p for
I,j in same group, (E[A]);; = g otherwise.

B C
(n/2 nodes)  (n/2 nodes)
_ \‘l . T ) 1
FPPEF V131
B T
(n/2 nodes) 7 P 1 q
- [ E[A]
C
(n/2 nodes) q p

Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group. 10




EXPECTED ADJACENCY SPECTRUM

D
Letting G be a stochastic block model graph drawn from ? ?/
Gn(p,q) and A € R™" be its adjacency matrix. (E[A]);; = p for
I,j in same group, (E[A]);; = g otherwise.
B (o}

(n/2 nodes)  (n/2 nodes)

I Il
r T 1

What is rank(E[A])?
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Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group. 10




EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R™" be its adjacency matrix. (E[A]);; = p for
I,j in same group, (E[A]);; = g otherwise.

B C
(n/2 nodes)  (n/2 nodes)

r T 1

[ What is rank(E[A])? What
(/2 :‘Ldes) 7 p q are the eigenvectors and
L E[A] eigenvalues of E[A]?
C
(n/2 nodes) 7 q P
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Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group. 10




EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R™" be its adjacency matrix, what are the

eigenvectors and eigenvalues of E[A]? ) ! . [Pt
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EXPECTED ADJACENCY SPECTRUM

B C
(n/2 nodes)  (n/2 nodes) V A vT
—

11 | 11111111

11
p q 11 woll1111-1-1-1-1

=11

E[A] 1 -1

1 -1

q p 1 -1

1 -1

~—

If we computelgthen we recover the communities B and C!



EXPECTED ADJACENCY SPECTRUM

B C
(n/2 nodes)  (n/2 nodes) V A vT
—
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E[A] R
4
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If we compute v, then we recover the communities B and C!

- Can show that for G ~ Gp(p, q), A s close to E[A] with high
probability (matrix concentration inequality)ﬁ.“

- Thus, the true second eigenvector of A is close to
[1,1,1,...,=1,—1, —L] and gives a good estimate of the
communities.




SPECTRUM OF PERMUTED MATRIX

Goal is to recover communities - so adjacency matrix won't be
ordered in terms of community ID (or our job is already done!)
Cc

B
(n/2 nodes)  (n/2 nodes)

B
(n/2 nodes)

[}
(n/2 nodes)




SPECTRUM OF PERMUTED MATRIX

Goal is to recover communities - so adjacency matrix won't be
ordered in terms of community ID (or our job is already done!)

B Cc
(n/2 nodes)  (n/2 nodes)

\V(v)
- \I(N)
0!

(n/2 nodes)

[}
(n/2 nodes)

+ Actual adjacency matrix is PAPT where P is a random.
perWand A is the ordered adjacency matrix.
- Exercise: The first two eigenvectors of PAPT are PV; and Pv2.

- PV, _@@)® @) O@Q}] gives community ids.



EXPECTED LAPLACIAN SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q), A € R"™" be its adjacency matrix and L be its
Laplacian, what are the eigenvectors and eigenvalues of E[L]?
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EXPECTED LAPLACIAN SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q), A € R"™" be its adjacency matrix and L be its
Laplacian, what are the eigenvectors and eigenvalues of E[L]?



EXPECTED LAPLACIAN SPECTRUM

Upshot: The second smallest eigenvector of E[L] is xg ¢ - the
indicator vector for the cut between the communities.

16



EXPECTED LAPLACIAN SPECTRUM

Upshot: The second smallest eigenvector of E[L] is xg ¢ - the
indicator vector for the cut between the communities.

- If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this eigenvector
(i.e., spectral clustering) would exactly recover the two
communities B and C.

16



EXPECTED LAPLACIAN SPECTRUM

Upshot: The second smallest eigenvector of E[L] is xg ¢ - the
indicator vector for the cut between the communities.

- If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this eigenvector
(i.e., spectral clustering) would exactly recover the two
communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like Markovs,
Chebyshevs, Bernsteins.

- Random matrix theory is a very recent and cutting edge
subfield of mathematics that is being actively applied in

computer science, statistics, and ML. 16



MATRIX CONCENTRATION

Everything after this slide is bonus material, if you are
interested in how we formally prove that spectral clustering
succeeds in the stochastic block model, using matrix
concentration bounds.

17



MATRIX CONCENTRATION

e

Matrix Concentration Inequality: If p > O (“’%:”), then with
high probability

|A — E[A]ll2 < O(v/pn).

where || - ||2 is the matrix spectral norm (operator norm).

\.

For any X € R™9, [IX|l2 = MaX,era. 7,1 [1X2]2-

18
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\.

For any X € R™9, [IX|l2 = MaX,era. 7,1 [1X2]2-

Exercise: Show that ||X||, is equal to the largest singular value of X.
For symmetric X (like A — E[A]) show that it is equal to the magnitude
of the largest magnitude eigenvalue.
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MATRIX CONCENTRATION

Matrix Concentration Inequality: If p > O (“’%:”), then with
high probability

|A — E[A]ll2 < O(v/pn).

where || - ||2 is the matrix spectral norm (operator norm).

\.

For any X € R™9, [IX|l2 = MaX,era. 7,1 [1X2]2-
Exercise: Show that ||X||, is equal to the largest singular value of X.
For symmetric X (like A — E[A]) show that it is equal to the magnitude
of the largest magnitude eigenvalue.
For the stochastic block model application, we want to show that the
second eigenvectors of A and E[A] are close. How does this relate to
their difference in spectral norm?
18



EIGENVECTOR PERTURBATION

Davis-Kahan Eigenvector Perturbation Theorem: Sup-
pose A,A € RI*9 are symmetric with ||A — Al < e
and eigenvectors vq,Vs,...,Vg and Vq, o, ..., V4. Letting
6(vj, ;) denote the angle between v; and v;, for all I:

g €
v, 7)) < ——

where X\, ..., \q are the eigenvalues of A.

.

The errors get large if there are eigenvalues with similar
magnitudes.

19



EIGENVECTOR PERTURBATION

A A A-A
1+¢ 0O 1 0 e 0

0 1 0 1+¢ 0 ¢

20



APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For p > O (@)
A —E[A]ll; < O(v/pn).
. . ' ot
Claim 2 (Davis-Kahan): For p > O (%)
O(yv/pn)

SinO(vy, ) < ——V 2
(V2. %) Minjzi [Ai = Ajl

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively.

21
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APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For p > O (@)
A —E[A]ll; < O(v/pn).

Claim 2 (Davis-Kahan): Forp > 0 ( og n)'

O(yv/pn)

SinO(vy, ) < ——V 2
(V2. %) Minjzi [Ai = Ajl

Recall: E[A], has eigenvalues A, = (E£07 ), — (0=a)1 '), — 0 for
>3
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Typ|cally, % will be the minimum of these two gaps.
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APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For p > O (@)
|A —E[A][l2 < O(v/pn).
Claim 2 (Davis-Kahan): Forp > 0 ( og n)'
o(ypn) . _O(vpn) :O<ﬁ>
minjzi [Ai — Al = (p—@q)n/2 (p—q)vn

Recall: E[A], has eigenvalues A, = (E£07 ), — (0=a)1 '), — 0 for
>3

sin 9(V27 Vz) <

- : (p—q)n
m;n |Ai = Aj| = min (qn, )

Typ|cally, % will be the minimum of these two gaps.

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively.
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APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: sinf(v,,v,) < 0 ((p:qﬁ))\/ﬁ)'

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively. 22




APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: sinf(v,,v,) <O (

i 1 ?
o q)f) What does this give us:

- Can show that this implies |[|[v, — % |2 < O (ﬁ) (exercise).

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively. 22




APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: sinf(v,,v,) <O (

i 1 ?
o q)f) What does this give us:

- Can show that this implies |[|[v, — % |2 < O (W) (exercise).

© Vs ﬁx&c: the community indicator vector.
(n/2 nodes) (n/2 nodes)
[ ) | A 1
1 1 1 1 1 1 1 1
Vi i ya ya Ya _Yn Tn n
()

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively. 22
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So Far: sinf(v,,v,) <O (

i 1 ?
o q)f) What does this give us:

- Can show that this implies |[|[v, — % |2 < O (ﬁ) (exercise).

© Vs ﬁx&c: the community indicator vector.
(n/2 nodes) (n/2 nodes)
[ ) | A 1
1 1 1 1 1 1 1 1
Vi yi ya ya ya _yn _yn _vn
()

- Every i where v, (i), %(i) differ in sign contributes > 1 to ||v, — 3.

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively. 22




APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: sinf(v,,v,) <O (

i 1 ?
o q)f) What does this give us:

- Can show that this implies |[|[v, — % |2 < O (ﬁ) (exercise).

© Vs ﬁx&c: the community indicator vector.

(n/2 nodes) (n/2 nodes)

I ) || A 1
1 1 1 1 1 1 1 1
Vi Vi Yn VR VR Yi vn yn

2

- Every i where v, (i), %(i) differ in sign contributes > 1 to ||v, — 3.

* So they differ in sign in at most O ( ) positions.

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively. 22




APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v, and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O ((p 7 ) nodes.

(n/2 nodes) (n/2 nodes) (n/2 nodes) (n/2 nodes)
L A
r ! Y . \ r L !
03 .—.01.02 .01 —.04 —.03 —.01 —.03 - 1 L1t 1 L 1 1
.03 .—.01 .02 . 4 4 d d 5 R i e
~
U2 ~ XB,C
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APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v, and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O ((p 7 ) nodes.

(n/2 nodes) (n/2 nodes) (n/2 nodes) (n/2 nodes)
L A
[ . Y ) \ f Y 1
03 .—.01.02 .01 —.04 —.03 —.01 —.03 - 1 L1t 1 L 1 1
.03 .—.01.02 . . . . . 5 A =R R
~
U2 ~ XB,C

- Why does the error increase as g gets close to p?
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APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v, and
assign nodes to communities according to the sign pattern of

this vector, we will correctly assign all but O ((p 7 ) nodes.

B C B C

(n/2 nodes) (n/2 nodes) (n/2 nodes) (n/2 nodes)
L A

[ . Y . \ f Y 1

03 .—.01.02 .01 —.04 —.03 —.01 —.03 - 1 L1t 1 L 1 1
.03 .—.01.02 . . . . . 5 A =R R
=~

V2

- Why does the error increase as g gets close to p?
- Even when p — g = 0(1/+/n), assign all but an O(n) fraction

of nodes correctly. E.g., assign 99% of nodes correctly.
23



