COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2021.
Lecture 17



Ayl Al )

- Problem Set 3 is due next Monday 11/8, 13:59pm.

- For Piazza participation credit, posts must be public. It is ok if they
are anonymous to your classmates (none are anonymous to us).

- A number of people asked for mid-level practice questions
bridging the quizzes and homeworks. | will try to post more of
those. | will post some linear algebra ones in a few days.

- When tackling the homework problems, before you begin trying to
prove anything, really make sure you understand the definitions
(E.g., are variables scalars or matrices. If matrices, what dimension
are they? If scalars, what possible range of values could they
take?) To me it is always helpful to draw out examples.
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SUMMARY

Last Few Classes: Low-Rank Approximation and PCA
- Compress data that lies close to a k-dimensional subspace.

- Equivalent to finding a low-rank approximation of the data matrix
X: X ~ XV’ for orthonormal V € R9xF,

- Optimal solution via eigendecomposition of X'X.

- Error analysis by looking at the eigenvalue spectrum of X"X.
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SUMMARY

Last Few Classes: Low-Rank Approximation and PCA
- Compress data that lies close to a k-dimensional subspace.

- Equivalent to finding a low-rank approximation of the data matrix
X: X ~ XVV/ for orthonormal V € RI*k,

- Optimal solution via eigendecomposition of X'X.
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1 Error analysis by looking at the eigenvalue spectrum of_’_)(T‘)Q_(>
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This Class: The SVD and Applications of low-rank apkproximation.

‘\ The singular value decompostion (SVD) and its connections to
igendecomposition and low-rank approximation.

- Matrix completion and collaborative filtering

- Entity embeddings (word embeddings, node embeddings, etc.)



SINGULAR VALUE DECOMPOSITION

[ *\ -
The Singular Value Decomposition (SVD) generalizes the q(}\j{ E‘}
eigendecomposition to asymmetric (even rectangular) matrices.
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SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matr'x%&”xd with rank(X) = r can be written as X = UZV'.

L malnye

- U has orthonormal columns i, ..., 0, € R" (left singular vectors).

-V has orthonormal columns v;, ..., V, € RY (right singular vectors).

- X is diagonal with elements oy > 0y > ... > o, > 0 (singular
values).



SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X € R"*9 with rank(X) = r can be written as X = UXV'.

- U has orthonormal columns i, ..., 0, € R" (left singular vectors).

-V has orthonormal columns v;, ..., V, € RY (right singular vectors).

- X is diagonal with elements oy > 0y > ... > o, > 0 (singular

values).
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SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X € R"*9 with rank(X) = r can be written as X = UXV'.

- U has orthonormal columns i, ..., 0, € R" (left singular vectors).

-V has orthonormal columns v;, ..., V, € RY (right singular vectors).

- X is diagonal with elements oy > 0y > ... > o, > 0 (singular

values).
orthonormal

nxd

orthonormal

positive diagonal

=| u¥ | Ur

gy
92

Or-1

vl
vy

VT

v

@s; army knife’ of modern li@




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*% in its singular value decomposition X = UXV':
—_— —_——
XX =

- -

X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value decomposition X = UXV":
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X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value decomposition X = UXV":
X'X = vzuT/szT = vz’
v
I

X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value decomposition X = UXV":

X'X =vzUuuzVv' = vV (the eigendecomgi)sition) .
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X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value decomposition X = UXV":
XX = vEUTUEV" = VE2V' (the eigendecomposition)

x
Similarly: XX" = U):Vﬂ/):UT =Uux’u’.
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X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION
r

Writing X € R"*9 in its singular value decomposition X = UXV": ra

Y e L
XX =VZU'UZV' = VE VT(the eigendecomposition), _
J/ Y XN {
Similarly: XX = UXV'VEUT = U}:2UT (‘]
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The left and right singular vectors are the eigenvectors of the
covattareeatrx XX and the-sssm=ssateix XX respectively.

X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value decomposition X = UXV":

XX = VEUTUZV' = VE2V' (the eigendecomposition)

Similarly: XX" = UXV'VEUT = UZ’U". d ‘

The left and right singular vectors are the eigenvectors of the | v, ;

covariance matrix X'X and the gram matrix XX' respectively. <

So, letting Vi, € R?** have columns equal to 4. . . ., Vs, we know that
XV,V}, is the best rank-k approximation to X (given by PCA).

X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value decomposition X = UXV":
XX = VEUTUZV' = VE2V' (the eigendecomposition)
Similarly: XX" = UZVVEUT = UX?UT.

The left and right singular vectors are the eigenvectors of the
covariance matrix X'X and the gram matrix XX' respectively.

§o lqttmg Vi, € Rk have columns equal to V4, ..., Vi, we know that
XVRVT is the best rank-k approximation to X (g|ven by PCA).
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What about UkULX where U, € R™** has columns equal to U, ..., Ux?

X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value decomposition X = UXV":
XX = VEUTUZV' = VE2V' (the eigendecomposition)
Similarly: XX" = UZVVEUT = UX?UT.

The left and right singular vectors are the eigenvectors of the
covariance matrix X'X and the gram matrix XX' respectively.

So, letting V, € R?*k have columns equal to V4, ..., Vi, we know that
XV, V] is the best rank-k approximation to X (given by PCA). X\JK\J|L L\W

What about U;U[X where U, € R"** has columns equal to s, ..., Ux?
Gives exactly the same approximation!

X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = argmin n,_p BEM—/BHF is given by:

X = XV,V], = UUIX
— ~—




THE SVD AND OPTIMAL LOW-RANK APPROXIMATION
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Xp = argmin un, _p pernxd ||[X — BHF is given by:

X, = kav UlX
Correspond to projecting the rows (data points) onto the span
of Vy, or the columns (features) onto the span of U,

Row (data point) compression Column (feature) compression
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = argmin un, _p gernxd |[X — BJ|¢ is given by:

Xp = XVRV], = UUEX

Correspond to projecting the rows (data points) onto the span
of V, or the columns (features) onto the span of U,
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = argmin un, _p gernxd |[X — BJ|¢ is given by:
Xp = XViV}, = UUEX
@-——_\‘
Correspond to projecting the rows (data points) onto the span

of V, or the columns (features) onto the span of U,
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = argmin un, _p gernxd |[X — BJ|¢ is given by:

Xp = XVRV], = ULULX = UpX,V),

Correspond to projecting the rows (data points) onto the span
of Vy, or the columns (features) onto the span of U,
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X: N:;L ‘G\)B
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X € R4 data matrix, U € RMX1nkX). matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




THE SVD AND OPTIMAL LOW-RANK APPROXIMATION
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X € R4 data matrix, U € RMX1nkX). matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




Applications of low-rank approximation beyond
compression.



MATRIX COMPLETION

Consider a matrix X € R"*9 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).



MATRIX COMPLETION

Consider a matrix X € R"*9 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).

Classic example: the Netflix prize problem.

X Movies
—_—

Users

rin|w|s|lw|[s|w

wlo|lw|lw| lw|lw|w

wlw|lw|w| lwlw|w

[V N IV PN YV B

w s lw|s|lw|[s|s

w s lw|s|w|[s|s

w s lw|s|w|la|s

e lw|w| lw|lw|lw
Nlo|lw|w|lw|la|lw




MATRIX COMPLETION

Consider a matrix X € R"*9 which we cannot fully observe but
believe is close to rank-k (i.e, well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

X Movies

5 1|4
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MATRIX COMPLETION

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

X Movies Assume rank(X)=1
-
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MATRIX COMPLETION

Consider a matrix X € R"*9 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

X Movies

5 1|4

Users
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MATRIX COMPLETION

Consider a matrix X € R"*9 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

Y X Movies
4931 3 [11]38]4a1(4a1[34/a6 5 1a
36| 3 3 (1238|425 |34|48 3 5
28| 3 3 (23| 3 3 3 3 (3.2
34| 3 3|4 |41|41(42]| 3 3 z Users 4
28| 3 3 (23] 3 3 3 3 |34
22| S 3|4 |42|39(44| 4 |53 5 5
1(33]|3 (22(31]29(32(15]|18 1 2

Solve: Y = argmin Z (X — Bj,l?]z

rank —k B opserved U,R)



MATRIX COMPLETION

Consider a matrix X € R"*9 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

Y X Movies
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Solve: Y = argmin Z (X — Bj,l?]z

rank —k B opserved U,R)

Under certain assumptions, can show that Y well approximates X on
both the observed and (most importantly) unobserved entries.
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