COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2021.
Lecture 16



LOGISTICS

P/ {59, C - 503,
2 bs -7 5%

- Problem Set 3 is posted. Due Monday 11/8, 11:59pm.

- | strongly encourage you to work together on the problems,
rather than split them up.

- Midterms can be collected after class today. Solutions were
posted in Moodle. The class average was a 34/40.

- Quiz this week due Monday at 8pm.



SUMMARY

Last Class: Optimal Low-Rank Approximation

- When data lies close to V, the optimal embedding in that
space is given by projecting onto that space.

XYW = argmin |X-BJ2
Bwith rowsiny ~—

+ Optimal V maximizes | XWV'||r and can be found greedily.
Equivilantly by computing the top k eigenvectors of&



SUMMARY

Last Class: Optimal Low-Rank Approximation

- When data lies close to V, the optimal embedding in that
space is given by projecting onto that space.

[ XW' = argmin |X—B|2
B with rows in V

i Optimal V maximizes |[XWV'||r and can be found greedily.
guivilantly by computing the top k eigenvectors of X'X.

This Class:

- How do we assess the error of this optimal V.

- Connection to the singular value decomposition.



BASIC SET UP

Reminder of Set Up: Assume that Xy, ..., X, lie close to any
k-dimensional subspace V of R?. Let X € R"*? be the data matrix.

d-dimensional space T
-x, L
—y ¥
Xqa
k-dim. subspace V
Let Vi, ...,V be an orthonormal basis for V and V € R9** pe the

matrix with these vectors as its columns.
- W' € R4 s the projection matrix onto V.

© X =~ X(WT). Gives the closest approximation to X with rows in V.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns ¥4, .. ., V. 3




LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

V minimizing ||X — XVWV'||2 is given by:
gl IFis g Pj*\»syww EVA

R
r
argmin X XWE=  argmax (VI = 3 2

orthonormal VERIxk orthonormal VER?x =1

X1,...,% € RY: data points, X € R"*%: data matrix, v1, ..., V, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns ¥4, .. ., V.




LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by:

k
argmin X XW[p = argmax XV =3 X5}
orthonormal VERYIX orthonormal VERIX .
==
Solution via eigendecomposition: Letting Vi, have columns V4, ...,V

corresponding to the top k eigenvectors of X'X,

Ve=  argmax [|XV|?
——— orthonormal VeRdxk

X1,...,% € RY: data points, X € R"*%: data matrix, v1, ..., V, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns ¥4, .. ., V.




LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by:

k
: T2 2 =12
argmin [X—=XW'[f = argmax [XV|= Z”X‘/sz
orthonormal VERY %k orthonormal VeRdxk -4;—'3///
Solution via eigendecomposition: Letting Vi, have columns V4, ...,V

corresponding to the top k eigenvectors of X'X,

Ve=  argmax [|XV|?

orthonormal VERdxk

- Proofvia Wr and greedy maximization.

X1,...,% € RY: data points, X € R"*%: data matrix, v1, ..., V, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns ¥4, .. ., V.




LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

S . ]
V minimizipg given by: \l\lL)O- j
k
H T2 2 .12
argmin [X—=XW'[f = argmax [XV|= Z”X‘/sz
orthonormal VERIxk orthonormal VER9*k =1
Solution via eigendecomposition: Letting Vi, have columns V4, ...,V

corresponding to the top k eigenvectors of X'X,

Ve=  argmax [|XV|?

orthonormal VERdxk

- Proof via Courant-Fischer and greedy maximization.

+ How accurate is this low-rank approximation? Can understand
using eigenvalues of X'X.
=

X1,...,% € RY: data points, X € R"*%: data matrix, v1, ..., V, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns ¥4, .. ., V.




SPECTRUM ANALYSIS

Let Vi, ...,V be the top k eigenvectors of X’X (the top k principal

components). Approximation error is: \j [ X
ko NV
T2
[IX = XV, Vi [[ d
Xi,...,% € RY data points, X € R"%9: data matrix, v1,...,% € R top
eigenvectors of XX, V, € RYXk: matrix with columns ¥, .. . , 7.




SPECTRUM ANALYSIS

Let Vi, ...,V be the top k eigenvectors of X'X (the top k principal
components). Approximation error is:

[IX = XV [[E = [IX[[7 — [IXV& V]I

~~
Xi,...,% € RY data points, X € R"%9: data matrix, v1,...,% € R top
eigenvectors of XX, V, € RYXk: matrix with columns ¥, .. . , 7.




SPECTRUM ANALYSIS

Let Vi, ...,V be the top k eigenvectors of X'X (the top k principal
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Xi,...,% € RY data points, X € R"%9: data matrix, v1,...,% € R top
eigenvectors of XX, V, € RYXk: matrix with columns ¥, .. . , 7.




SPECTRUM ANALYSIS

Let Vi, ...,V be the top k eigenvectors of X'X (the top k principal
components). Approximation error is:

[IX = XV I[E = (X7 — [IXVell?
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- Exercise: For any matrix A, [|A|Z = >7 ||d||2 = tr(ATA) (sum of
diagonal entries = sum eigenvalues — ",
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Xi,...,% € RY data points, X € R"%9: data matrix, v1,...,% € R top
eigenvectors of XX, V, € RYXk: matrix with columns ¥, .. . , 7.




SPECTRUM ANALYSIS

Let Vi, ...,V be the top k eigenvectors of X"X (the top k principal
components) Apprommann rror i
e THevle

X — XVRVL||7 = tr(XTX) tr(VEXTXVy)

- Exercise: For any matrix A, [|A2 = >0 [|dj[|2 = tr(ATA) (sum of
diagonal entries = sum eigenvalues).

Xi,...,% € RY data points, X € R"%9: data matrix, v1,...,% € R top
eigenvectors of XX, V, € RYXk: matrix with columns ¥, .. . , 7.
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Let Vi, ...,V be the top k eigenvectors of X'X (the top k principal
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diagonal entries = sum eigenvalues).
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- Exercise: For any matrix A, [|A2 = >0 [|dj[|2 = tr(ATA) (sum of
diagonal entries = sum eigenvalues).
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SPECTRUM ANALYSIS

Let Vi, ...,V be the top k eigenvectors of X'X (the top k principal
components). Approximation error is:
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- Exercise: For any matrix A, [|A2 = >0 [|dj[|2 = tr(ATA) (sum of
diagonal entries = sum eigenvalues).

Xi,...,% € RY data points, X € R"%9: data matrix, v1,...,% € R top
eigenvectors of XX, V, € RYXk: matrix with columns ¥, .. . , 7.




SPECTRUM ANALYSIS

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
T2 T
IX = XVVE[E = D A(X'X)
i=R+1
X,..., % € RY data points, X € R">9: data matrix, v4,...,V, € R% top

eigenvectors of XX, V, € RI*k: matrix with columns ¥, .. . , V.




SPECTRUM ANALYSIS

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is

d

T2 T
IX = XVeVE[IE = > A(XTX)
i=k+1
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\/ error of optimal low rank
approximation
X,..., % € RY data points, X € R">9: data matrix, v4,...,V, € R% top

eigenvectors of X'X, Vi, € R?%k: matrix with columns ¥,

o Vn 6




SPECTRUM ANALYSIS

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
X = XVeVE[E = > A(X'X)
i=R+1
7%\\ 784 dimensional vectors XTX

eigendecomposition
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Xi,...,%X € RY data points, X € R"*9: data matrix, v4,...,V, € R top
eigenvectors of X'X, Vi, € R?%k: matrix with columns ¥, . . ., V. 6



SPECTRUM ANALYSIS

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
X = XVeVE[E = > A(X'X)
i=k+1

784 dimensional vectors

eigendecomposition
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[ X,..., % € RY data points, X € R">9: data matrix, v4,...,V, € R top ]
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eigenvectors of XX, V, € RI*k: matrix with columns V4, .. . , V.




SPECTRUM ANALYSIS

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
X = XVeVE[E = > A(X'X)
i=k+1

784 dimensional vectors

error from best rank-
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[ X,..., % € RY data points, X € R"*9: data matrix, v4,...,V, € R top

eigenvectors of XX, V, € RYXk: matrix with columns ¥, .. . , 7. 6




SPECTRUM ANALYSIS

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
X = XVeVE[E = > A(X'X)
i=k+1

784 dimensional vectors

Eigenvalue

- Choose k to balance accuracy/compression — often at an ‘elbow’.
—_—

...,V € R% top

[ X1,..., % € RY: data points, X € R"%%: data matrix, V4,
oy VR 6

eigenvectors of X'X, Vi, € RIXF: matrix with columns ¥,




SPECTRUM ANALYSIS

Plotting the spectrum of X’X (its eigenvalues) shows how
compressible X is using low-rank approximation (i.e., how close
X1,...,Xy are to a low-dimensional subspace).

X,..., % € RY data points, X € R"*9: data matrix, v4,...,v, € R% top
eigenvectors of XX, V, € R9%k: matrix with columns ¥, .. . , 7.




SPECTRUM ANALYSIS

Plotting the spectrum of X’X (its eigenvalues) shows how
compressible X is using low-rank approximation (i.e., how close
X1,...,Xy are to a low-dimensional subspace).

784 dimensional vectors

eigendecomposition
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X,..., % € RY data points, X € R"*9: data matrix, v4,...,v, € R% top
eigenvectors of XX, V, € R9%k: matrix with columns ¥, .. . , 7.




SPECTRUM ANALYSIS

)
Plotting the spectrum of X’X (its eigenvalues) shows how )M
compressible X is using low-rank approximation (i.e., how close \\Wf‘

Xi,...,Xn are to a low-dimensional subspace). /\X“ X\[\/T”r
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Xi,...,%X € RY data points, X € R"%9: data matrix, v1,...,V, € R top
eigenvectors of XX, V, € RY%k: matrix with columns ¥, .. . , 7.




SPECTRUM ANALYSIS

Plotting the spectrum of XX (its eigenvalues) shows how
compressible X is using low-rank approximation (i.e., how clgée
X1,...,X, are to a low-dimensional subspace).
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Xi,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XX, V, € RIXk: matrix with columns ¥, .. . , 7.

Eigenvalue




SPECTRUM ANALYSIS

784 dimensional vectors

eigendecomposition .
o )
e bR
Exercises: Fbﬁ\\w ek
/

1. Show that the eigenvalues of X'X are always positive. Hint:
Use that \j = \7J-TXTX\7j.



SPECTRUM ANALYSIS

784 dimensional vectors

elgendecompos:t:on

(r

E!IE
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Exercises:

1. Show that the eigenvalues of X'X are always positive. Hint:
Use that \j = \7J-TXTX\7j.
2. Show that for symmetric A, the trace is the sum of
eigenvalues: tr(A) = "7, A\i(A). Hint: First prove the cyclic
P v -
property of trace, that for any MN, tr(MN) = tr(NM) and then

apply this to A’s eigendecomp?s/ition.



SUMMARY

“ Many (most) datasets can be approximated via projection
onto a low-dimensional subspace.

- Find this subspace via a maximization problem:

max  ||XV||Z.
orthonormal V

- Greedy solution via eigendecomposition of X'X.
- Columns of V are the top eigenvectors of X'X.

- Error of best low-rank approximation (compressibility of
data) is determined by the tail of X'X's eigenvalue spectrum.



INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features

are correlated. o
floors sale price
home 1 2 2 195,000
home 2 4 1 310,000
home n 5 3 450,000
——p—
X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, V, € R?%k: matrix with columns ¥, . . ., V.
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Our compressed dataset is C = XV, where the columns of V, are the
top k eigenvectors of X'X.

X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, V, € R?%k: matrix with columns ¥, . . ., V.
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INTERPRETATION IN TERMS OF CORRELATION
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Recall: Low-rank approximation is possible when our data fe}\ures
are correlated. S )\l

floors sale price

home 1 2 2 195,000 x
home 2 4 1 310,000

) home n 5 3 450,000

Our compressed dataset is C = XV, where the columns of V, are the
top k eigenvectors of X'X. ktd dxd

Observe that C'C = \J J YIX V= \/,,\ \//\\/T\/K
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X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, V, € R?%k: matrix with columns ¥, . . ., V.
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INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features
are correlated. S

floors| sale price
home 1 2 2 195,000
home 2 a4 1 310,000
home n 5 3 450,000

Our compressed dataset is C = XV, where the columns of V, are the
top k eigenvectors of X'X.

Observe that C'C = A,

C'Cis diagonal. l.e, all columns are orthogonal to each other, and
correlations have been removed. Maximal compression.

X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, V, € R?%k: matrix with columns ¥, . . ., V.
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ALGORITHMIC CONSIDERATIONS

Runtime to compute an optimal low-rank approximation:

X,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of X'X, Vi, € R4>k: matrix with columns V4, . . ., V. 1




ALGORITHMIC CONSIDERATIONS
- —3
QE X L’&jé
Runtime to compute an optimal low-r@dnkapproximation:

- Computing X"X requires O(nd?) time.

X,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of X'X, Vi, € R4>k: matrix with columns V4, . . ., V. 1




ALGORITHMIC CONSIDERATIONS

Runtime to compute an optimal low-rank approximation:

- Computing X"X requires O(nd?) time.
- Computing its full eigendecomposition to obtain vy, ...,V
requires O(d®) time (similar to the inverse (X'X)~").
T —

X,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of X'X, Vi, € R4>k: matrix with columns V4, . . ., V. 1




ALGORITHMIC CONSIDERATIONS

Runtime to compute an optimal low-rank approximation:

- Computing X'X requires O(nd?) time.
- Computing its full eigendecomposition to obtain vy, ...,V
requires O(d”) time (similar to the inverse (X'X)~").

Many faster iterative and randomized methods. Runtime is
roughly O(ndk) to output just to top k eigenvectors vi, . . ., V.
= -

1 Will see in a few classes (power method, Krylov methods).
- One of the most intensively studied problems in numerical

\C utation.

X,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of X'X, Vi, € R4>k: matrix with columns V4, . . ., V.




