COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2021. Lecture 16

LOGISTICS

- · Problem Set 3 is posted. Due Monday 11/8, 11:59pm.
- I strongly encourage you to work together on the problems, rather than split them up.
- Midterms can be collected after class today. Solutions were posted in Moodle. The class average was a 34/40.
- · Quiz this week due Monday at 8pm.

Last Class: Optimal Low-Rank Approximation

• When data lies close to V, the optimal embedding in that space is given by projecting onto that space.

$$\mathbf{X} \underline{\mathbf{V}} \underline{\mathbf{V}}^T = \underset{\mathbf{B} \text{ with rows in } \mathcal{V}}{\text{arg min}} \| \mathbf{X} \underline{-\mathbf{B}} \|_F^2.$$

Optimal V maximizes $\|XVV^T\|_F$ and can be found greedily. Equivilantly by computing the top k eigenvectors of X^TX .

Last Class: Optimal Low-Rank Approximation

• When data lies close to \mathcal{V} , the optimal embedding in that space is given by projecting onto that space.

Optimal **V** maximizes $\|\mathbf{XVV}^T\|_F$ and can be found greedily. <u>Equivilantly</u> by computing the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$.

This Class:

- \cdot How do we assess the error of this optimal $\mbox{\bf V}.$
- Çonnection to the singular value decomposition.

BASIC SET UP

Reminder of Set Up: Assume that $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.

Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{W}^T \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .
- $X \approx X(VV^T)$. Gives the closest approximation to X with rows in V.

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

$$\begin{array}{c} \mathbf{V} \text{ minimizing } \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 \text{ is given by:} \\ \text{pyth by order} \\ \text{arg min } \\ \text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k} \\ \end{array} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 = \underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \|\mathbf{X} \mathbf{V}\|_F^2 = \sum_{j=1}^k \|\mathbf{X} \vec{\mathbf{V}}_j\|_2^2$$

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\ \mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \min} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^\mathsf{T}\|_F^2 = \underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X} \mathbf{V}\|_F^2 = \sum_{j=1}^k \|\mathbf{X} \vec{\mathbf{V}}_j\|_2^2$$

Solution via eigendecomposition: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of X^TX ,

$$V_k = \underset{\text{orthonormal } V \in \mathbb{R}^{d \times k}}{\text{arg max}} \|XV\|_F^2$$

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_F^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg min}} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}\|_F^2 = \underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \|\mathbf{X} \mathbf{V}\|_F^2 = \sum_{j=1}^K \|\mathbf{X} \vec{\mathbf{V}}_j\|_2^2$$

Solution via eigendecomposition: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of X^TX ,

$$\mathbf{V}_k = \underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\operatorname{arg max}} \|\mathbf{X}\mathbf{V}\|_F^2$$

· Proof via <u>Courant-Fischer</u> and gre<u>edy maximization</u>.

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Solution via eigendecomposition: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of X^TX ,

$$\mathbf{V}_k = \underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\operatorname{arg max}} \|\mathbf{X}\mathbf{V}\|_F^2$$

- · Proof via Courant-Fischer and greedy maximization.
- How accurate is this low-rank approximation? Can understand using eigenvalues of X^TX .

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Let $\underline{\vec{v}_1, \dots, \vec{v}_k}$ be the top k eigenvectors of $\underline{X^TX}$ (the top k principal components). Approximation error is: $\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_b^T\|_F^2$

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T}\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T}\|_F^2$$

 $\vec{X}_1,\ldots,\vec{X}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$ (the top k principal components). Approximation error is:

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T}\|_F^2 = \|\mathbf{X}\|_F^2 - \|\underline{\mathbf{X} \mathbf{V}_k}\|_F^2$$

• Exercise: For any matrix A, $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \operatorname{tr}(\mathbf{A}^T\mathbf{A})$ (sum of diagonal entries = sum eigenvalues).

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$ (the top k principal components). Approximation error is: $\mathbf{Z}_{\mathbf{X}} = \mathbf{X}_{\mathbf{X}} \mathbf{X}_{$

• Exercise: For any matrix A, $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \operatorname{tr}(\mathbf{A}^T\mathbf{A})$ (sum of diagonal entries = sum eigenvalues).

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

inents). Approximation error is:
$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 = \operatorname{tr}(\mathbf{X}^T \mathbf{X}) - \operatorname{tr}(\mathbf{V}_k^T \mathbf{X}^T \mathbf{X} \mathbf{V}_k) \bigvee_{i=1}^k \mathbf{V}_k^T \mathbf{X}^T \mathbf{X}^T \mathbf{V}_k$$

$$= \sum_{i=1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) - \sum_{i=1}^k \mathbf{V}_i^T \mathbf{X}^T \mathbf{X} \mathbf{V}_k$$

$$\mathbf{V}_i^T (\mathbf{X}^T \mathbf{X}) \mathbf{V}_i = \mathbf{V}_i^T (\lambda_i \cdot \mathbf{V}_i)$$

$$\mathbf{V}_i^T (\mathbf{X}^T \mathbf{X}) \mathbf{V}_i = \mathbf{V}_i^T (\lambda_i \cdot \mathbf{V}_i)$$

$$\mathbf{V}_i^T (\mathbf{X}^T \mathbf{X}) \mathbf{V}_i = \mathbf{V}_i^T (\lambda_i \cdot \mathbf{V}_i)$$

• Exercise: For any matrix A, $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \operatorname{tr}(\mathbf{A}^T\mathbf{A})$ (sum of diagonal entries = sum eigenvalues).

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of X^TX (the top k principal components). Approximation error is: $\|X \setminus v\|_F$ $\|X - XV_kV_k^T\|_F^2 = \operatorname{tr}(X^TX) - \operatorname{tr}(V_k^TX^TXV_k)$

$$= \sum_{i=1}^{d} \underline{\lambda_i(\mathbf{X}^T\mathbf{X})} - \sum_{i=1}^{k} \vec{\mathbf{v}}_i^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{v}}_i$$

$$= \sum_{i=1}^{d} \underline{\lambda_i(\mathbf{X}^T\mathbf{X})} - \sum_{i=1}^{k} \underline{\lambda_i(\mathbf{X}^T\mathbf{X})}$$

• Exercise: For any matrix A, $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \operatorname{tr}(\mathbf{A}^T\mathbf{A})$ (sum of diagonal entries = sum eigenvalues).

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$||\mathbf{X} - \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}}||_{F}^{2} = \operatorname{tr}(\mathbf{X}^{\mathsf{T}} \mathbf{X}) - \operatorname{tr}(\mathbf{V}_{k}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{V}_{k})$$

$$= \sum_{i=1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}} \mathbf{X}) - \sum_{i=1}^{k} \vec{\mathbf{V}}_{i}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \vec{\mathbf{V}}_{i}$$

$$= \sum_{i=1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}} \mathbf{X}) - \sum_{i=1}^{k} \lambda_{i}(\mathbf{X}^{\mathsf{T}} \mathbf{X}) = \sum_{i=k+1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}} \mathbf{X})$$

$$\lambda_{1} (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \ni \lambda_{2} (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \geqslant \dots \geqslant \lambda_{k} (\mathbf{X}^{\mathsf{T}} \mathbf{X})$$

• Exercise: For any matrix A, $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \operatorname{tr}(\mathbf{A}^T\mathbf{A})$ (sum of diagonal entries = sum eigenvalues).

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Claim: The error in approximating **X** with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$ is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

Claim: The error in approximating **X** with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$ is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T}\|_F^2 = \sum_{i=k+1}^d \lambda_i (\mathbf{X}^\mathsf{T} \mathbf{X})$$

 $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

Claim: The error in approximating **X** with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$ is:

$$||\mathbf{X} - \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}}||_{F}^{2} = \sum_{i=k+1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}} \mathbf{X})$$
784 dimensional vectors
$$||\mathbf{X} - \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}}||_{F}^{2} = \sum_{i=k+1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}} \mathbf{X})$$
eigendecomposition
$$||\mathbf{X} - \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}}||_{F}^{2} = \sum_{i=k+1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}} \mathbf{X})$$

$$||\mathbf{X} - \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}}||_{F}^{2} = \sum_{i=k+1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}} \mathbf{X})$$
eigendecomposition
$$||\mathbf{X} - \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}}||_{F}^{2} = \sum_{i=k+1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}} \mathbf{X})$$

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Claim: The error in approximating **X** with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$ is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

 $\vec{x}_1,\ldots,\vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Claim: The error in approximating **X** with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$ is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

 $\vec{x}_1,\ldots,\vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Claim: The error in approximating **X** with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$ is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

• Choose *k* to balance accuracy/compression – often at an 'elbow'.

 $\vec{x}_1,\ldots,\vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Plotting the spectrum of X^TX (its eigenvalues) shows how compressible X is using low-rank approximation (i.e., how close $\vec{x}_1, \ldots, \vec{x}_n$ are to a low-dimensional subspace).

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X}$, $\mathbf{V}_k\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Plotting the spectrum of X^TX (its eigenvalues) shows how compressible X is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace).

 $\vec{x}_1,\ldots,\vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Plotting the spectrum of X^TX (its eigenvalues) shows how compressible X is using low-rank approximation (i.e., how close /(x-xvv1)/F _{1|x; ||x; ||z $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace). 784 dimensional vectors eigendecomposition

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T} \mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

 $\vec{x}_1,\ldots,\vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Exercises:

positive semidante

1. Show that the eigenvalues of $\mathbf{X}^T\mathbf{X}$ are always positive. Hint: Use that $\underline{\lambda_j} = \vec{v}_j^T\mathbf{X}^T\mathbf{X}\vec{v}_j$.

Exercises:

- 1. Show that the eigenvalues of $\mathbf{X}^T\mathbf{X}$ are always positive. Hint: Use that $\lambda_j = \vec{\mathbf{v}}_i^T\mathbf{X}^T\mathbf{X}\vec{\mathbf{v}}_j$.
- 2. Show that for symmetric **A**, the trace is the sum of eigenvalues: $\text{tr}(\mathbf{A}) = \sum_{i=1}^n \lambda_i(\mathbf{A})$. **Hint:** First prove the cyclic property of trace, that for any MN, $\text{tr}(\mathbf{MN}) = \text{tr}(\mathbf{NM})$ and then apply this to **A**'s eigendecomposition.

- Many (most) datasets can be approximated via projection onto a low-dimensional subspace.
- · Find this subspace via a maximization problem:

$$\max_{\text{orthonormal } \mathbf{V}} \|\mathbf{X}\mathbf{V}\|_F^2.$$

- · Greedy solution via eigendecomposition of **X**^T**X**.
- · Columns of **V** are the top eigenvectors of X^TX .
- Error of best low-rank approximation (compressibility of data) is determined by the tail of $\mathbf{X}^T\mathbf{X}'s$ eigenvalue spectrum.

Recall: Low-rank approximation is possible when our data features are correlated.

10000° bathrooms+ 10° (sq. ft.) ≈ list price									
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price			
home 1	2	2	1800	2	200,000	195,000			
home 2	4	2.5	2700	1	300,000	310,000			
6			2000			450,000			
home n	5	3.5	3600	3	450,000	450,000			

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Recall: Low-rank approximation is possible when our data features are correlated

Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of X^TX .

 $\vec{X}_1,\ldots,\vec{X}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Recall: Low-rank approximation is possible when our data features are correlated.

Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of X^TX .

Observe that $C^TC = \bigvee_{k}^T X^T X \bigvee_{k} = \bigvee_{k}^T \bigvee_{k} \bigvee_$

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X}$, $\mathbf{V}_k\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Recall: Low-rank approximation is possible when our data features are correlated

	10000* bathrooms+ 10* (sq. ft.) ≈ list price								
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price			
home 1	2	2	1800	2	200,000	195,000			
home 2	4	2.5	2700	1	300,000	310,000			
				١.					
•									
•									
•		•	•		•	•			
home n	5	3.5	3600	3	450,000	450,000			

Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of X^TX .

Observe that $\mathbf{C}^{\mathsf{T}}\mathbf{C} = \mathbf{\Lambda}_{k}$

C^TC is diagonal. I.e., all columns are orthogonal to each othe<u>r</u>, and correlations have been removed. Maximal compression.

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Runtime to compute an optimal low-rank approximation:

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Runtime to compute an optimal low-rank approximation:

· Computing X^TX requires $O(nd^2)$ time.

 $\vec{X}_1, \dots, \vec{X}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Runtime to compute an optimal low-rank approximation:

- · Computing X^TX requires $O(nd^2)$ time.
- · Computing its full eigendecomposition to obtain $\vec{v}_1, \dots, \vec{v}_k$ requires $O(d^3)$ time (similar to the inverse $(\mathbf{X}^T\mathbf{X})^{-1}$).

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T} \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Runtime to compute an optimal low-rank approximation:

- · Computing X^TX requires $O(nd^2)$ time.
- Computing its full eigendecomposition to obtain $\vec{v}_1, \dots, \vec{v}_k$ requires $O(d^3)$ time (similar to the inverse $(\mathbf{X}^T\mathbf{X})^{-1}$).

Many faster iterative and randomized methods. Runtime is roughly $\tilde{O}(ndk)$ to output just to top k eigenvectors $\vec{v}_1, \dots, \vec{v}_k$.

- Will see in a few classes (power method, Krylov methods).
- One of the most intensively studied problems in numerical computation.

 $\vec{X}_1, \dots, \vec{X}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.