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LOGISTICS/SUMMARY

Logistics:

- We have almost finished grading the midterm. Will return
grades tomorrow evening and tests in class on Thursday.
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Last Class:

- No-distortion embeddings for data lying in a k-dimensional
subspace via an orthonormal basis V € R9** for that
subspace. dxd

- Using that V'V is an identity matrix and W' is a projection
matrix to argue this, and understand low-rank matrix
approximation.

- ‘Dual view’ of low-rank approximation: data points that can
be reconstructed from a few basis vectors vs. linearly
dependent features.



LAST CLASS: EMBEDDING WITH ASSUMPTIONS

Set Up: Assume that data points X;,..., X, € RY lie in some
k-dimensional subspace V of RY. =

d-dimensional space

k-dim. subspace V

Let Vi, ...,V be an orthonormal basis for V and V € R9** be the
matrix with these vectors as its columns.

IVTX; = VIXi[5 = 1% — XI5

Letting X; = V'X;, we have a perfect embedding from V into R,



PROJECTION VIEW

Claim: If X;,...,X, lie in a k-dimensional subspace V with
orthgnormal ba5|s Ve Rdx’? ;he data matrix can be written as
" E(“" X= X' (Implies rank(X) < k)

Na

- W/ is a projection matrix, which projects the rows of X (the data
points X1, ..., X, onto the subspace V.
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k-dim. subspace V

Xi,...,% € RY: data points, X € R"*?: data matrix, ¥, . .., V, € RY: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V. 3
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PROPERTIES OF PROJECTION MATRICES

Quick Exercise 1: Show that W' is idempotent. l.e,
(WH(Wy = (Why for any y € RY.

V@VV Y ;ﬁg
S

Quick Exercise 2: Show that W'(I — W) = 0 ( the projection is
orthogonal to its complement)

W'- WA W'- VY= 0
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EMBEDDING WITH ASSUMPTIONS

Main Focus of Today: Assume that data points X1, ..., X, lie close to

any k-dimensional subspace V of RY.
d-dimensional space

k-dim. subspace V

Letting Vi, ..., V, be an orthonormal basis for V and V € R?** be the
matrix with these vectors as its columns, V'X; € RF is still a good
embedding for x; € R%. The key idea behind low-rank approximation
and principal component analysis (PCA).
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Main Focus of Today: Assume that data points X1, ..., X, lie close to

any k-dimensional subspace V of RY.
d-dimensional space
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k-dim. subspace V
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Letting Vi, ..., V, be an orthonormal basis for V and V € R?** be the

matrix with these vectors as its columns, V'X; € RF is still a good
embedding for x; € R%. The key idea behind low-rank approximation
and principal component analysis (PCA).

- (How do we find V and V?

How good is the embedding?



BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
ortth&rmal basis V € RY** the data matrix can be approximated as
XVV'. XV gives optimal embedding of X in V.

=
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X1,...,% € RY: data points, X € R"*%: data matrix, v1, . .., v, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.
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SOLUTION VIA EIGENDECOMPOSITION

. . o . _ T 2 . . .
Vm\|=mm|zmg HLM is given by:

argmax IXVI[z = ZHV Hz—ZHXV/”z
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Xi,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V e R9>k: matrix with columns ¥, .. . , V. 9




SOLUTION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by:
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argmax XV =" IV = D X713
i=1 J=1
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REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION
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REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION
%

d
2R
(X X)) * YA
Eigenvector: X € RY is an eigenvector of a matrix A € RI*? if
AX = XX for some scalar A (the eigenvalue corresponding to X).

- That is, A just ‘stretches’ x. /Q\&/\éﬂgﬁ‘\%\,

- If Alis symmetric, can find d orthonormal eigenvectors
~—— _—
Vi,...,Vq. Let V e R9%Y have these vectors as columns.
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AV = |AV; AV, --- AVy

JE——
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REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION
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Eigenvector: X € R? is an/eigenvector of a matrix A RIxd if
AX = XX for some scalar X (the eigenvalue corresponding to X).

- That is, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors
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REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: X € R? is an eigenvector of a matrix A € R9x9 if

AX = XX for some scalar A (the eigenvalue corresponding to X).
e

- That is, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors

Vi,...,Vq. Let V e R9%Y have these vectors as columns.

| | | | | | \ ¥
A= |AV, AV - AVy| = [ MW Ay oo Ady| = VAN

Yields eigendecomposition: AWM = A = VAV
' \
\N-Y > i ITJ{%QQS Mu W} v
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REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

dxd

orthonormal

diagonal

orthonormal

Iy
VLY
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VT

Typically order the eigenvectors in decreasing order:

M= > A
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COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric A, the eigenvectors are
given via the greedy optimization:
\

Vi = argmax V'AY
= Vwith ||v],=1

v, = arg max VTAV.
Pwith V=1, (7,7)=0

Vg = arg max VIAV.
P with [[v]|,=1, (7,7)=0 Vj<d



COURANT-FISCHER PRINCIPAL

Py=N P Y
Courant-Fischer Principal: For symmetric A, the eigenvectors are
given via the greedy optimization: _
| -
Vi = argmax VAV. =V, ]A\/; VAN

vVwith [|v],=1T —

~ /\
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//\J Vy = arg max VTAV.

Fwith [|[v],=1, (7,7)=0

)

Vg = arg max VIAV.
Vwith ||v][2=1, (V,Vj)=0 Vj<d )
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© VAV, = ;- VTV, = \;, the j largest eigenvalue. W U ey
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COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric A, the eigenvectors are
given via the greedy optimization:
V; = argmax V' AV.

v with ||v||,=1

v, = arg max VTAV.
Pwith V=1, (7,7)=0

Vg = arg max VIAV. ~ Y
Fwith v]l,=1, (V,7)=0 vj<d - XX

© VIAV; = ;- VTV, = \;, the j largest eigenvalue.

- The first k eigenvectors of&(corresponding to the largest k
eigenvalues) are exactly the directions of greatest variance in X
that we use for low-rank approximation.



LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION
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d-dimensional space
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LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

Upshot: Letting Vi, have columns Vi, ...,V corresponding to
the top k eigenvectors of the covariance matrix X'X, Vy, is the
orthogonal basis minimizing

X — XV, VE[IZ,

Xi,...,% € RY data points, X € R"%9: data matrix, v,...,V, € R top
eigenvectors of XX, V, € R9Xk: matrix with columns ¥, .. . , 7.
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