COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2021. Lecture 15

LOGISTICS/SUMMARY

Logistics:

• We have almost finished grading the midterm. Will return grades tomorrow evening and tests in class on Thursday.

LOGISTICS/SUMMARY

Logistics:

• We have almost finished grading the midterm. Will return grades tomorrow evening and tests in class on Thursday.

Last Class:

- No-distortion embeddings for data lying in a k-dimensional subspace via an orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$ for that subspace.
- Using that V^TV is an identity matrix and VV^T is a projection matrix to argue this, and understand low-rank matrix approximation.
- 'Dual view' of low-rank approximation: data points that can be reconstructed from a few basis vectors vs. linearly dependent features.

LAST CLASS: EMBEDDING WITH ASSUMPTIONS

Set Up: Assume that data points $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ lie in some k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\underline{\mathbf{V}} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

$$\|\mathbf{V}^{\mathsf{T}}\vec{x}_{i} - \mathbf{V}^{\mathsf{T}}\vec{x}_{j}\|_{2}^{2} = \|\vec{x}_{i} - \vec{x}_{j}\|_{2}^{2}.$$

Letting $\tilde{x}_i = \mathbf{V}^T \vec{x}_i$, we have a perfect embedding from \mathcal{V} into \mathbb{R}^k .

PROJECTION VIEW

Claim: If $\vec{x}_1, ..., \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$ the data matrix can be written as

$$n = \underbrace{X = XVV^T}_{\text{(Implies rank}(X) \le k)}$$

• VV^T is a projection matrix, which projects the rows of X (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace V.

d-dimensional space

PROJECTION VIEW

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^T$$
 (Implies rank(X) $\leq k$) $X = XVV^T$

 $\cdot \underline{\mathbf{W}}^{\mathsf{T}}$ is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace \mathcal{V} .

d-dimensional space

PROPERTIES OF PROJECTION MATRICES

Quick Exercise 1: Show that VV^T is idempotent. I.e., $(VV^T)(VV^T)\vec{y} = (VV^T)\vec{y}$ for any $\vec{y} \in \mathbb{R}^d$.

Quick Exercise 2: Show that $VV^{T}(I - VV^{T}) = 0$ (the projection is orthogonal to its complement).

$$M - M = M - M = 0$$

PYTHAGOREAN THEOREM

Pythagorean Theorem: For any orthonormal $\mathbf{V} \in \mathbb{R}^{d \times k}$ and any

$$\vec{y} \in \mathbb{R}^{d},$$

$$\vec{y} = \vec{y}$$

EMBEDDING WITH ASSUMPTIONS

Main Focus of Today: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace V of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

EMBEDDING WITH ASSUMPTIONS

Main Focus of Today: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

How do we find \mathcal{V} and \mathbf{V} ?
How good is the embedding?

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthogormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as $\mathbf{X} \underline{\mathbf{V}} \underline{\mathbf{V}}^T$. $\underline{\mathbf{X}} \mathbf{V}$ gives optimal embedding of \mathbf{X} in \mathcal{V} .

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find V (equivilantly V)?

How do we find $\mathcal V$ (equivilantly $\mathbf V$)?

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\operatorname{arg\,min}} \| \mathbf{X} - \mathbf{XVV}^{\mathsf{T}} \|_F^2 = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{XVV}^{\mathsf{T}})_{i,j})^2 = \sum_{i=1}^n \| \vec{\mathbf{X}}_i - \mathbf{VV}^{\mathsf{T}} \vec{\mathbf{X}}_i \|_2^2$$

$$\underset{\mathbf{X}_i = \mathbf{X}_i = \mathbf{X}_i + \mathbf{X}_i = \mathbf{X}_i + \mathbf{X}_i = \mathbf{X}_i + \mathbf{X}_i = \mathbf{X}_i + \mathbf{X}_i = \mathbf{X}_i = \mathbf{X}_i + \mathbf{X}_i = \mathbf{X}_i$$

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find V (equivilantly V)?

If $\vec{x}_1, \dots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find V (equivilantly V)?

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find \mathcal{V} (equivalently \mathbf{V})?

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with $|\mathbf{v}_1| |\mathbf{v}_1| |\mathbf{v}_2| |\mathbf{v}_3| |\mathbf{v}_4| |\mathbf{v}_3| |\mathbf{v}_3$

How do we find \mathcal{V} (equivalently \mathbf{V})?

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_F^2$ is given by:

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}{\arg\max}\,\|\mathbf{X}\mathbf{V}\|_{\mathit{F}}^{2}=\sum_{i=1}^{n}\|\mathbf{V}^{\mathsf{T}}\vec{x}_{i}\|_{2}^{2}=\sum_{j=1}^{k}\|\mathbf{X}\vec{v}_{j}\|_{2}^{2}$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \frac{\|\mathbf{X}\vec{v}\|_2^2}{}. \qquad (\text{XV})^T (\text{XV}) \text{ if } \vec{v} \text{ i$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_{\mathit{F}}^2 = \sum_{i=1}^n \|\mathbf{V}^\mathsf{T}\vec{x}_i\|_2^2 = \sum_{j=1}^k \|\mathbf{X}\vec{v}_j\|_2^2$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$\vec{\mathbf{v}}_1 = \underset{\vec{\mathbf{v}} \text{ with } \|\mathbf{v}\|_2 = 1}{\text{arg max}} \vec{\mathbf{v}}^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{v}}.$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{XV}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{x}_i\|_2^2 = \sum_{j=1}^k \|\mathbf{X} \vec{v}_j\|_2^2$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \vec{v}^T \boldsymbol{X}^T \boldsymbol{X} \vec{v}.$$

$$\vec{V}_2 = \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{v}^T \boldsymbol{X}^T \boldsymbol{X} \vec{v}.$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$\vec{\mathbf{v}}_k = \underset{\vec{\mathbf{v}} \text{ with } \|\mathbf{v}\|_2 = 1, \ \langle \vec{\mathbf{v}}, \vec{\mathbf{v}}_i \rangle = 0 \ \forall j < k}{\text{arg max}} \vec{\mathbf{v}}^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{v}}.$$

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace V. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

XV, XV,

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg\max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{X}_i\|_2^2 = \sum_{j=1}^k \|\mathbf{X}\vec{V}_j\|_2^2$$

Surprisingly, can find the columns of $V, \vec{v}_1, \dots, \vec{v}_k$ greedily.

find the columns of
$$\mathbf{V}$$
, $\vec{\mathbf{V}}_1, \dots, \vec{\mathbf{V}}_k$ greedily.

$$\vec{\mathbf{V}}_1 = \underset{\vec{\mathbf{V}} \text{ with } ||\mathbf{V}||_2 = 1}{\arg \max} \vec{\mathbf{V}}^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{V}}. \qquad \text{for eigenful of } \vec{\mathbf{V}}^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{V}}.$$

$$\vec{\mathbf{V}}_2 = \underset{\vec{\mathbf{V}} \text{ with } ||\mathbf{V}||_2 = 1, \ \langle \vec{\mathbf{V}}, \vec{\mathbf{V}}_1 \rangle = 0}{\arg \max} \vec{\mathbf{V}}^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{V}}. \qquad \text{second of } \vec{\mathbf{V}}^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{V}}.$$

These are exactly the top k eigenvectors of $\mathsf{X}^\mathsf{T}\mathsf{X}.$

Eigenvector: $\vec{x} \in \mathbb{R}^d$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if $\mathbf{A}\vec{x} = \lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

That is, A just 'stretches' x.

(X,X) = X,X

Eigenvector: $\vec{x} \in \mathbb{R}^d$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if $\mathbf{A}\vec{x} = \lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

 \cdot That is, **A** just 'stretches' x.

- rejerde sompostor
- If **A** is symmetric, can find *d* orthonormal eigenvectors $\vec{v}_1, \dots, \vec{v}_d$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns.

- That is, **A** just 'stretches' x.
- If **A** is symmetric, can find d orthonormal eigenvectors $\vec{v}_1, \dots, \vec{v}_d$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns.

$$\underline{\mathbf{AV}} = \begin{bmatrix} | & | & | & | \\ \mathbf{A}\vec{v}_1 & \mathbf{A}\vec{v}_2 & \cdots & \mathbf{A}\vec{v}_d \\ | & | & | & | \end{bmatrix}$$

- That is, **A** just 'stretches' x.
- If **A** is symmetric, can find d orthonormal eigenvectors $\vec{v}_1, \dots, \vec{v}_d$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns.

$$AV = \begin{bmatrix} | & | & | & | \\ A\vec{v}_1 & A\vec{v}_2 & \cdots & A\vec{v}_d \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1\vec{v}_1 & \lambda_2\vec{v}_2 & \cdots & \lambda\vec{v}_d \\ | & | & | & | \end{bmatrix}$$

- · That is, **A** just 'stretches' *x*.
- If **A** is symmetric, can find *d* orthonormal eigenvectors $\vec{v}_1, \dots, \vec{v}_d$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns.

- · That is, A just 'stretches' x.
- If **A** is symmetric, can find *d* orthonormal eigenvectors $\vec{v}_1, \dots, \vec{v}_d$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns.

$$\mathbf{AV} = \begin{bmatrix} | & | & | & | \\ \mathbf{A}\vec{v}_1 & \mathbf{A}\vec{v}_2 & \cdots & \mathbf{A}\vec{v}_d \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1\vec{v}_1 & \lambda_2\vec{v}_2 & \cdots & \lambda\vec{v}_d \\ | & | & | & | \end{bmatrix} = \mathbf{V}\mathbf{\Lambda}^\mathsf{T}$$

$$\forall \text{ ields eigendecomposition: } \mathbf{AVV}^\mathsf{T} = \mathbf{A} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^\mathsf{T}$$

$$\mathbf{AV}^\mathsf{T} = \mathbf{A} = \mathbf{V}\mathbf{A}\mathbf{V}^\mathsf{T}$$

Typically order the eigenvectors in decreasing order:

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$$
.

COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric A, the eigenvectors are given via the greedy optimization:

$$\begin{split} \vec{\mathbf{v}}_1 &= \underset{\vec{\mathbf{v}} \text{ with } \|\mathbf{v}\|_2 = 1}{\text{arg max}} \vec{\mathbf{v}}^T \mathbf{A} \vec{\mathbf{v}}.\\ \vec{\mathbf{v}}_2 &= \underset{\vec{\mathbf{v}} \text{ with } \|\mathbf{v}\|_2 = 1, \ \langle \vec{\mathbf{v}}, \vec{\mathbf{v}}_1 \rangle = 0}{\text{arg max}} \vec{\mathbf{v}}^T \mathbf{A} \vec{\mathbf{v}}.\\ & \cdots \\ \vec{\mathbf{v}}_d &= \underset{\vec{\mathbf{v}} \text{ with } \|\mathbf{v}\|_2 = 1, \ \langle \vec{\mathbf{v}}, \vec{\mathbf{v}}_j \rangle = 0}{\text{arg max}} \vec{\mathbf{v}}^T \mathbf{A} \vec{\mathbf{v}}. \end{split}$$

COURANT-FISCHER PRINCIPAL

Al: N A(c.v): N.v.V

Courant-Fischer Principal: For symmetric **A**, the eigenvectors are given via the greedy optimization:

$$\vec{V}_1 = \underset{\vec{v} \text{ with } ||v||_2 = 1}{\text{arg max}} \vec{v}^T A \vec{v}. \qquad \vec{V}_1 = \lambda_1$$

$$\vec{V}_2 = \underset{\vec{v} \text{ with } ||v||_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{v}^T A \vec{v}.$$

$$\vec{V}_d = \underset{\vec{v} \text{ with } ||v||_2 = 1, \ \langle \vec{v}, \vec{v}_j \rangle = 0 \ \forall j < d}{\text{arg max}} \vec{v}^T A \vec{v}.$$

$$\vec{V}_j \vec{V}_j = \lambda_j \cdot \vec{V}_j^T \vec{V}_j = \lambda_j, \text{ the } j^{th} \text{ largest eigenvalue.}$$

COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric **A**, the eigenvectors are given via the greedy optimization:

$$\vec{V}_1 = \underset{\vec{v} \text{ with } ||v||_2 = 1}{\text{arg max}} \vec{V}^T \mathbf{A} \vec{v}.$$

$$\vec{V}_2 = \underset{\vec{v} \text{ with } ||v||_2 = 1}{\text{arg max}} \vec{V}^T \mathbf{A} \vec{v}.$$

$$\cdots$$

$$\vec{V}_d = \underset{\vec{v} \text{ with } ||v||_2 = 1, \ \langle \vec{v}, \vec{v}_j \rangle = 0 \ \forall j < d}{\text{arg max}} \vec{V}^T \mathbf{A} \vec{v}.$$

$$A = XX$$

- · $\vec{\mathbf{v}}_{j}^{\mathsf{T}}\mathbf{A}\vec{\mathbf{v}}_{j} = \lambda_{j} \cdot \vec{\mathbf{v}}_{j}^{\mathsf{T}}\vec{\mathbf{v}}_{j} = \lambda_{j}$, the j^{th} largest eigenvalue.
- The first k eigenvectors of X^TX (corresponding to the largest k eigenvalues) are exactly the directions of greatest variance in X that we use for low-rank approximation.

Upshot: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix X^TX , V_k is the orthogonal basis minimizing

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2$$

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Upshot: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix X^TX , V_k is the orthogonal basis minimizing

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2$$

This is principal component analysis (PCA).

 $\vec{x}_1,\ldots,\vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Upshot: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix X^TX , V_k is the orthogonal basis minimizing

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2$$

This is principal component analysis (PCA).

How accurate is this low-rank approximation?

 $\vec{x}_1,\ldots,\vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Upshot: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix X^TX , V_k is the orthogonal basis minimizing

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2$$

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand using eigenvalues of $\mathbf{X}^T\mathbf{X}$.

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.