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LOGISTICS

- Problem Set 2 is due tomorrow, 11:59pm.
- The exam will be held next Tuesday in class.

- I'am holding additional office hours for midterm prep,
tomorrow from 3-5pm and Monday, 4-6pm.



SUMMARY

Last Class:

- Finish Up proof of the JL lemma.
- Example application to clustering.

- Discuss connections to high dimensional geometry.

This Class:

Finish up connection between JL Lemma and high
dimensional geometry.

- Midterm review.

- Will do the ‘fun’ parts of high dimensional geometry after
the midterm.



CURSE OF DIMENSIONALITY

Many-Near Orthogonal Vectors: In d-dimensional space, a set
of 29(¢9) random unit vectors have all pairwise dot products at
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Even with an exponential number of random vector samples,
we don't see any nearby vectors.

- One version of the ‘curse of dimensionality.

- If all your distances are roughly the same, distance based
methods (k-means clustering, nearest neighbors, SVMs, etc.)
aren’t going to work well.

- Distances are only meaningful if we have lots of structure
and our data isn't just independent random vectors.



CURSE OF DIMENSIONALITY

Distances for MNIST Digits:
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Distances for Random Images:
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CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if

N e R™*4 s a random matrix (linear map) with m = O (log”>,

for X;,..., X, € R? with high probability, for all i, : —

(1= &)l = %l < HUHz (1+ €)% — %ill3.



CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if Z<
N < R4 is a random matrix (linear map) with m = 0 (log”> \L
AN

for X;,..., X, € R? with high probability, for all i, :

(1= )l = %[5 < [NX; - NX[3 < (1 + 1% — X2

Implies: If Xi,...,X, are nearly orthogonal unit vectors in
d-dimensions (with pairwise dot products bounded by ¢/8),
then ¥ . M 5re nearly orthogonal unit vectors in

x> Ml
m-dimensions (with pairwise dot products bounded by e).



CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if
N < R4 is a random matrix (linear map) with m = 0 (log”>,

for X;,..., X, € R? with high probability, for all i, :

(1= )l = %[5 < [NX; - NX[3 < (1 + 1% — X2

Implies: If Xi,...,X, are nearly orthogonal unit vectors in
d-dimensions (with pairwise dot products bounded by ¢/8),
then ¥ . M 5re nearly orthogonal unit vectors in

x> Ml
m-dimensions (with pairwise dot products bounded by e).

- Algebra is a bit messy but a good exercise to partially work
through.
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Claim 1: n nearly orthogonal unit vectors can be projected to

m=20 ( l"% ) dimensions and still be nearly orthogonal.

Claim 2: In mdimensions, there are at most 2™ nearly
T——
orthogonal vectors.



CONNECTION TO DIMENSIONALITY REDUCTION

laim 1: n nearly orthogonal unit vectors can be projected to
m=20 (l"%) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 2°0(¢™) nearly
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CONNECTION TO DIMENSIONALITY REDUCTION

Claim 1: n nearly orthogonal unit vectors can be projected to
m=20 (l"%) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 20(¢™) nearly
orthogonal vectors.
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CONNECTION TO DIMENSIONALITY REDUCTION

Claim 1: n nearly orthogonal unit vectors can be projected to
m=20 (l"%) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 20(¢™) nearly
orthogonal vectors.

- For both these to hold it must be that n < 20(’m),
- 20(e?m) — 70(logn) > n Tells us that the JL lemma is optimal

up to constants.
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CONNECTION TO DIMENSIONALITY REDUCTION

Claim 1: n nearly orthogonal unit vectors can be projected to
m=20 (l"%) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 20(¢™) nearly
orthogonal vectors.

- For both these to hold it must be that n < 20(¢m),
- 20(em) = 20(logn) > n Tells us that the JL lemma is optimal
up to constants.

- m is chosen just large enough so that the odd geometry of
d-dimensional space still holds on the n points in question
after projection to a much lower dimensional space.



Midterm Review



MIDTERM FORMAT

Rough Outline: (subject to small changes)

_Question 1: 4 always, sometimes, nevers.
/Question 2: 4 short answers, sort of like quiz questions.
{ Question 3: 5 part question with limited proofs.

- Question 4: 5 part question on analyzing an algorithm.
Similar to but easier than a homework question.

- Question 5: Extra credit question touching on high
dimensional geometry.



MIDTERM FORMAT

Rough Outline: (subject to small changes)

- Question 1: 4 always, sometimes, nevers.

- Question 2: 4 short answers, sort of like quiz questions.
- Question 3: 5 part question with limited proofs.
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( Question 4: 5 part question on analyzing an algorithm.
Similar to but easier than a homework question.

- Question 5: Extra credit question touching on high
dimensional geometry. Y-5 )J»A’a’,

You only need to know the statement of the
Johnson-Lindenstrauss Lemma, not the proof.



QUESTIONS

Content or Format Questions?
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RANDOM HASH FUNCTIONS
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CONCENTRATION BOUNDS
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EXAMPLE PROBLEMS

(A), that with pr()Iml)ilit@mtpnts an estimate
an input graph up to error £100, and with probability .4 gutputs
some bad estimate with worse error. Describe an algorithm that outputs an estimate of the
number of triangles in an input graph up to error £100 with probability > .99 and runs in

tinl(t(i(T_(.é)).
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The Chernoff bound states that for independent random variables X,
taking values in {0,1}, letting u = E [>_7_, X;], for any § > 0,
Pr(|>2 X — p| > dp) < 2exp <—j—’(§>




EXAMPLE PROBLEMS

3. Consider an algorithm A running in time 7'(A), that with probability .6 outputs an estimate
of the number of triangles in an input graph up to error +100, and with probability .4 outputs
some bad estimate with worse error. Describe an algorithm that outputs an estimate of the
number of triangles in an input graph up to error £100 with probability > .99 and runs in

time O(T'(A)).

The Chernoff bound states that for independent random variables X, ..., X,
taking values in {0,1}, letting u = E [>_7_, X;], for any § > 0,

Pr(|>2 X — p| > dp) < 2exp <—j—’;> “



EXAMPLE PROBLEMS

2. Assume there are 1000 registered users on your site u1, . .., 41000, and in a given day, each user
visits the site with some probability p;. The event that any user visits the site is independent
of what the other users do. Assume that Y329 p; = 500.

(a) Let X be the number of users that visit the site on the given day. What is E[X].
(b) Apply a Chernoff bound to show that Pr[X > 600] < .01.

(c) Apply Markov’s inequality and Chebyshev’s inequality to bound the same probability.
How do they compare?

The Chernoff bound states that for independent random variables X, ..., Xn
taking values in {0,1}, letting u = E [>_1_, X;], for any § > 0,

Pr (}z:wJ Xi — [L‘ > (5;[) <2exp <7;;{:> .
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Pr (}z:wJ Xi — [L‘ > (5;[) <2exp <7;;{:> .
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EXAMPLE PROBLEMS

ALWAYS, SOMETIMES, or NEVER:

2. Prmax(X1,...X,) > t] < Y7 | Pr[X; > t] for any random variables X1, ..., Xn.

(c) PriX=sNY =t] =Pr[X =s]-Pr[Y =1].
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