COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2021. Lecture 13

LOGISTICS

- · Problem Set 2 is due tomorrow, 11:59pm.
- The exam will be held next Tuesday in class.
- I am holding additional office hours for midterm prep, tomorrow from 3-5pm and Monday, 4-6pm.

Last Class:

- · Finish Up proof of the JL lemma.
- · Example application to clustering.
- · Discuss connections to high dimensional geometry.

This Class:

Finish up connection between JL Lemma and high dimensional geometry.

- Midterm review.
- · Will do the 'fun' parts of high dimensional geometry after the midterm.

CURSE OF DIMENSIONALITY

Many-Near Orthogonal Vectors: In d-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T \vec{x}_j \in [1.98, 2.02].$$

Even with an exponential number of random vector samples, we don't see any nearby vectors.

- · One version of the 'curse of dimensionality'.
- If all your distances are roughly the same, distance based methods (k-means clustering, nearest neighbors, SVMs, etc.) aren't going to work well.
- Distances are only meaningful if we have lots of structure and our data isn't just independent random vectors.

CURSE OF DIMENSIONALITY

Distances for MNIST Digits:

Distances for Random Images:

Recall: The Johnson Lindenstrauss lemma states that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2 \le \|\mathbf{\Pi}\vec{x}_i - \mathbf{\Pi}\vec{x}_j\|_2^2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2.$$

Recall: The Johnson Lindenstrauss lemma states that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2 \le \|\mathbf{\Pi}\vec{x}_i - \mathbf{\Pi}\vec{x}_j\|_2^2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2.$$

Implies: If $\vec{x}_1, \ldots, \vec{x}_n$ are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon/8$), then $\frac{\mathbf{n}\vec{x}_1}{\|\mathbf{n}\vec{x}_1\|_2}, \ldots, \frac{\mathbf{n}\vec{x}_n}{\|\mathbf{n}\vec{x}_n\|_2}$ are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ).

Recall: The Johnson Lindenstrauss lemma states that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2 \le \|\mathbf{\Pi}\vec{x}_i - \mathbf{\Pi}\vec{x}_j\|_2^2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2.$$

Implies: If $\vec{x}_1, \ldots, \vec{x}_n$ are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon/8$), then $\frac{\Pi \vec{x}_1}{\|\Pi \vec{x}_1\|_2}, \ldots, \frac{\Pi \vec{x}_n}{\|\Pi \vec{x}_n\|_2}$ are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ).

· Algebra is a bit messy but a good exercise to partially work through.

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In *m*_dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.

• For both these to hold it must be that $\underline{n} \leq 2^{O(\epsilon^2 m)}$.

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.

• For both these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$.

$$\cdot \ 2^{O(\epsilon^2 m)} = 2^{O(\log n)} \ge n.$$

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.

- For both these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$.
- $2^{O(\epsilon^2 m)} = 2^{O(\log n)} \ge n$. Tells us that the JL lemma is optimal up to constants.

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.

- For both these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$.
- $2^{O(\epsilon^2 m)} = 2^{O(\log n)} \ge n$. Tells us that the JL lemma is optimal up to constants.
- m is chosen just large enough so that the odd geometry of d-dimensional space still holds on the n points in question after projection to a much lower dimensional space.

Midterm Review

MIDTERM FORMAT

Rough Outline: (subject to small changes)

Question 1: 4 always, sometimes, nevers.

Question 2: 4 short answers, sort of like quiz questions.

- Question 3: 5 part question with limited proofs.
- Question 4: 5 part question on analyzing an algorithm. Similar to but easier than a homework question.
- Question 5: Extra credit question touching on high dimensional geometry.

MIDTERM FORMAT

Rough Outline: (subject to small changes)

- · Question 1: 4 always, sometimes, nevers.
- · Question 2: 4 short answers, sort of like quiz questions.
- · Question 3: 5 part question with limited proofs.

Question 4: 5 part question on analyzing an algorithm. <u>Simi</u>lar to but easier than a homework question.

 Question 5: Extra credit question touching on high dimensional geometry.

You only need to know the statement of the Johnson-Lindenstrauss Lemma, not the proof.

QUESTIONS

Content or Format Questions?

QUESTIONS

RANDOM HASH FUNCTIONS

CONCENTRATION BOUNDS

median trick 3. Consider an algorithm A running in time T(A), that with probability (.6) outputs an estimate of the number of triangles in an input graph up to error ± 100 , and with probability .4 outputs some bad estimate with worse error. Describe an algorithm that outputs an estimate of the number of triangles in an input graph up to error ± 100 with probability $\geq .99$ and runs in time $O(T(\mathcal{A}))$. 0101 60 X > S + 1X = # "successol trials" Ex=.6+ Pr(X<.55+)<.01

The Chernoff bound states that for independent random variables X_1,\ldots,X_n taking values in $\{0,1\}$, letting $\mu=\mathbb{E}\left[\sum_{i=1}^n X_i\right]$, for any $\delta>0$, $\Pr\left(\left|\sum_{i=1}^n X_i - \mu\right| > \delta\mu\right) \leq 2\exp\left(-\frac{\delta^2\mu}{2+\delta}\right).$

3. Consider an algorithm \mathcal{A} running in time $T(\mathcal{A})$, that with probability .6 outputs an estimate of the number of triangles in an input graph up to error ± 100 , and with probability .4 outputs some bad estimate with worse error. Describe an algorithm that outputs an estimate of the number of triangles in an input graph up to error ± 100 with probability $\geq .99$ and runs in time $O(T(\mathcal{A}))$.

The Chernoff bound states that for independent random variables X_1, \ldots, X_n taking values in $\{0,1\}$, letting $\mu = \mathbb{E}\left[\sum_{i=1}^n X_i\right]$, for any $\delta > 0$, $\Pr\left(\left|\sum_{i=1}^n X_i - \mu\right| > \delta \mu\right) \leq 2 \exp\left(-\frac{\delta^2 \mu}{2+\delta}\right)$.

- 2. Assume there are 1000 registered users on your site u_1, \ldots, u_{1000} , and in a given day, each user visits the site with some probability p_i . The event that any user visits the site is independent of what the other users do. Assume that $\sum_{i=1}^{1000} p_i = 500$.
 - (a) Let **X** be the number of users that visit the site on the given day. What is $\mathbb{E}[X]$.
 - (b) Apply a Chernoff bound to show that $Pr[X \ge 600] \le .01$.
 - (c) Apply Markov's inequality and Chebyshev's inequality to bound the same probability. How do they compare?

The Chernoff bound states that for independent random variables X_1, \ldots, X_n taking values in $\{0,1\}$, letting $\mu = \mathbb{E}\left[\sum_{i=1}^n X_i\right]$, for any $\delta > 0$, $\Pr\left(\left|\sum_{i=1}^n X_i - \mu\right| > \delta \mu\right) \leq 2 \exp\left(-\frac{\delta^2 \mu}{2 + \delta}\right)$.

1 / v v ± ±/ / w ±

- 2. Assume there are 1000 registered users on your site u_1, \ldots, u_{1000} , and in a given day, each user visits the site with some probability p_i . The event that any user visits the site is independent of what the other users do. Assume that $\sum_{i=1}^{1000} p_i = 500$.
 - (a) Let X be the number of users that visit the site on the given day. What is $\mathbb{E}[X]$.
 - (b) Apply a Chernoff bound to show that $Pr[X \ge 600] \le .01$.
 - (c) Apply Markov's inequality and Chebyshev's inequality to bound the same probability. How do they compare?

The Chernoff bound states that for independent random variables X_1, \ldots, X_n taking values in $\{0,1\}$, letting $\mu = \mathbb{E}\left[\sum_{i=1}^n X_i\right]$, for any $\delta > 0$, $\Pr\left(\left|\sum_{i=1}^n X_i - \mu\right| > \delta \mu\right) \leq 2 \exp\left(-\frac{\delta^2 \mu}{2 + \delta}\right)$.

ALWAYS, SOMETIMES, or NEVER:

2. $\Pr[\max(X_1, \dots X_n) \ge t] \le \sum_{i=1}^n \Pr[X_i \ge t]$ for any random variables X_1, \dots, X_n .

(c)
$$\Pr[\mathbf{X} = s \cap \mathbf{Y} = t] = \Pr[\mathbf{X} = s] \cdot \Pr[\mathbf{Y} = t].$$