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LOGISTICS

- Problem Set 2 is due Friday, 11:59pm.
- Quiz 6 is due today at 8pm.

- The exam will be held next Tuesday in class. Let me know
ASAP if you need accommodations (e.g., extended time).
- We will do some midterm review in class on Thursday. | will

also hold additional office hours for midterm prep, next
Monday, 4-6pm, and potentially Friday afternoon as well.



SUMMARY

Last Class: The Johnson-Lindenstrauss Lemma

- Low-distortion embeddings for any set of points via random
projection.

- Started on proof of the JL Lemma via the Distributional JL
Lemma.

This Class:

- Finish Up proof of the JL lemma.
- Example applications to classification and clustering.

- Discuss connections to high dimensional geometry.



THE JOHNSON-LINDENSTRAUSS LEMMA

N

Johnson-Lindenstrauss Lemma: For any set of points
X1,..., X € R9and e > 0 there exists a linear map M : RY — R™
such thatm =0 (‘Og”) and letting % = MNX;:

€2

Foralli,j: (1= e)lIXi = Xjll2 < 1% = Xjll2 < (1 + €)lIXi — Xjl2-

Further, if M e R™*? has each entry chosen iid. from
N(0,1/m)and m = 0O (“)iig/é) M satisfies the guarantee with
probability > 1— 4.
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DISTRIBUTIONAL JL

We showed that the Johnson-Lindenstrauss Lemma follows from:

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we set m = O (mgﬁ%) then for any

v © RY, with probability > 1 -4
(1=l < INYll2 < (1 + €)lI¥l2-

. J

Main Idea: Union bound over (9) difference vectors yj; = X — X;.
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DISTRIBUTIONAL JL PROOF

~

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as M(0,1/m). If we setm = 0O (log(éﬂ) then
, with probability >1—4§

(M= alyll < Myll < (1+ €)¥ll2

- Let y denote I'Iy and let N(j) denote the j™ row of M.
- Forany j, y(j) i), V) = Z, 18-y ()Where g ~ N(0,1/m).
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¥ € R% arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection. d: original dim. m: compressed dim, e: error, §: failure prob.




DISTRIBUTIONAL JL PROOF

—

- Let y denote My and let N(j) denote the j row of M.

- Foranyj, y(j J),y) = E, 18i - Y(i) where g ~ N(0,1/m).
g (i) ~ (0,%); normally distributed
2
variance — variance Z42-

m 1 m ya )zvariance
[ 1 [ 1 varlance

VANYANRINYN

gi gi -y () =[g1-y(1) + g2 ¥(2) -

Also Gaussian!

¥ € RY: arbitrary vector, §j € R™: compressed vector, M € R™*%: random
projection mapping y — y. M(j): j* row of N, d: original dimension. m: com- 6
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DISTRIBUTIONAL JL PROOF

Letting y = Ny, we have y(j) = (N(j),y) and:

y(iy?
Zg, i) where g; - y(i) ~ <O, m) .

Stability of Gaussian Random Variables. For independent a ~
N(w,0%) and b ~ N(up,07) we have:

a+ b~ N+ 2,07 + 73)

S\ A g/ O\
Thus, ¥(j) ~ N(0, y() + y(z) +.o 1+ y(d) 2y 1, ¥ itself is a random
Gaussian vector. Rotat\ona{ Invariance ofthe Gaussian distribution.

7
[ y € RY: arbitrary vector, § € R™: compressed vector, M € R™%9: random ]



DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as A(0,1/m),
forany y € RY, letting y = My

y(j) ~ N (O, )-

E[YIE =E | > V07| =
~— =
0

r\)r\)

[l

So ¥ has the right norm in expectation.

¥ € R% arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = My

y(j) ~ (0, I¥3/m) and E[I§]13] = V]2
19112 = S, ¥(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)
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Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Prl|Z — EZ| > €EZ] < 2e~M€/8.



EXAMPLE APPLICATION: R-MEANS CLUSTERING

Goal: Separate n points in d dimensional space into k groups.
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k-means Objective: Cost(Cy,...,Cy) = C:mrékz > K= 3.

J=1 )?Eck
Write in terms of distancgs:
o AL
Cost(Crs ..., Cr) = legkz Z X — %13

J=1 X1,%€Ck 10



EXAMPLE APPLICATION: R-MEANS CLUSTERING

k-means Objective: Cost(Cy,...,Cy) = Jmin Z > IK =Rl

J 1 X1,%,€Cx

If we randomly projecttom =0 (‘05%”

) dimensions, for all pairs X1, X,

(1= lI% = &ll < 1% = %[l < (1 + ¢)lIXi = X%/ =

Letting Cost(Cy, ... ,Ck) = mm Z Z %1 — %2 |5

) 1 X1,%€Cx
(1= €)Cost(Cy,...,Cx) < Cost(Cy,...,Cr) < (14 €)Cost(Ch, ... ,Cp).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(Cy, ..., Cx). The optimal set of clusters
will have true cost within 1+ ce times the true optimal. Good
exercise to prove this.
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The Johnson-Lindenstrauss Lemma and High
Dimensional Geometry

- High-dimensional Euclidean space looks very different from
low-dimensional space. So how can JL work?

- Is Euclidean distance in high-dimensional meaningless,
making JL useless? (The curse of dimensionality)



ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in
d-dimensional space?

a)1 b)logd oVd d)d
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NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that
have all pairwise dot products |(X,y)| < €? (think e = .01)

a)d b) ©(d) c) ©(d?) d) 20

In fact, an exponentially large set of random vectors will be nearly
pairwise orthogonal with high probability!
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ORTHOGONAL VECTORS PROOF

Claim: 28(<’d) random d-dimensional unit vectors will have all
pairwise dot products |(X,)| < e (be nearly orthogonal) with high

probability.

Proof: Let X;,...,X; each have independent random entries set to
+1/Vd.

- What is |[X;||,? Every X; is always a unit vector.

-+ What is E[(X;, X)]? E[(X;,X;)] =0
+ By a Chernoff bound, Pr[|(X;, )| > €] < 2e=<'9/6 (great exercise).

- If we chose t = %eezd/”, using a union bound over all (}) < %efzd“
possible pairs, with probability > 3/4 all will be nearly orthogonal.
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CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of 26(€d) random unit
vectors have all pairwise dot products at most € (think e = .01)

— — — — ST
1% = %113 = I1%113 + [1%)]13 — 2%/%; < [1.98,2.02].

Even with an exponential number of random vector samples,
we don't see any nearby vectors.

- One version of the ‘curse of dimensionality.

- If all your distances are roughly the same, distance based
methods (k-means clustering, nearest neighbors, SVMs, etc.)
aren’t going to work well.

- Distances are only meaningful if we have lots of structure
and our data isn't just independent random vectors.
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CURSE OF DIMENSIONALITY

Distances for MNIST Digits:
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Distances for Random Images:

<107

Another Interpretation: Tells us that random data can be a very bad
model for actual input data.
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