COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2021.
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LOGISTICS

- Problem Set 2 is due Friday, 11:59pm.
- Quiz 6 is due today at 8pm.

- The exam will be held next Tuesday in class. Let me know
ASAP if you need accommodations (e.g., extended time).

- We will do some midterm review in class on Thursday. | will
also hold additional office hours for midterm prep, next
Monday, 4-6pm, and potentially Friday afternoon as well.
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SUMMARY

Last Class: The Johnson-Lindenstrauss Lemma

‘| Low-distortion embeddings for any set of points via random
projection.

- Started on proof of the JL Lemma via the Distributional JL
Lemma.



SUMMARY

Last Class: The Johnson-Lindenstrauss Lemma

- Low-distortion embeddings for any set of points via random
projection.

- Started on proof of the JL Lemma via the Distributional JL
Lemma.

This Class:

- Finish Up proof of the JL lemma.
- Example applicationstottassifreationand clustering.

- Discuss connections to high dimensional geometry.



THE JOHNSON-LINDENSTRAUSS LEMMA

7~

Johnson-Lindenstrauss Lemma: For any set of points
Xi,...,X:» € R?and e > 0 there exists a linear map N : R? —>&m
suchthatm=0 (lo%”) and letting % = NX;:

€

S

Foralli,j: (1—e)lIXi — Xjll2 < X — Xjll2 < (1 + ) lIXi — Xilla-
S—— R
Further, if M e R™*? has each entry chosen iid. from
N(0,1/m)and m =0 (‘Oiig'/‘s) N satisfies the guarantee with
probability > 1 — 4. I
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THE JOHNSON-LINDENSTRAUSS LEMMA

7~

Johnson-Lindenstrauss Lemma: For any set of points
X1,..., % € R?and e > 0 there exists a linear map M : RY — R™
suchthatm=0 (log”) and letting % = NX;:

Foralli,j: (1= e)lX = Xll2 < 1% = Xll2 < (1+ €)[IX; = Xl2-

Further, if M e R™*? has each entry chosen iid. from
N(0,1/m)and m = 0 <l°g£/6>, M satisfies the guarantee with
probability > 1 — 4.

d-dimensional space m-dimensional space

) (for m << d)
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DISTRIBUTIONAL JL

We showed that the Johnson-Lindenstrauss Lemma follows from:

Distributional JL Lemma: Let M € R™*¢ have each entry cho-

sen i.id. as (0,1/m). If we setm = O | log(ﬁﬂ) then for any

Vv & RY, with probability >1—4

(1=l < [MWll2 < (1+ €)lI¥ll2-
~—




DISTRIBUTIONAL JL

We showed that the Johnson-Lindenstrauss Lemma follows from:

—

Q Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.id. as A(0,1/m). If we set m = O (log(eﬂ) then for any
v e RY, with probability > 1—4§ << Q(

S T
(1=l < INYll2 < (1 + €)|I¥l2-
(%.

Main Idea: Union bound over (9) difference vectors ¥ = X — Xi.
= |/ N 3
S <Zr) \ X
1\ ~ \ \
\w@/d}c ‘°(5(“ ) o




DISTRIBUTIONAL JL PROOF

7

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O (log(€1/5 ) then for any

y « RY with probability >1—6

(1=l < INYll2 < (1+ &)I¥l2

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection. d: original dim. m: compressed dim, e: error, §: failure prob.




DISTRIBUTIONAL JL PROOF

7

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O (log(€1/5 ) then for any

y « RY with probability >1—6

(1=l < INYll2 < (1+ &)I¥l2

- Lety denotel‘lb)?and let M(j) denote the j row of M.

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection. d: original dim. m: compressed dim, e: error, §: failure prob.




DISTRIBUTIONAL JL PROOF

7

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O (log(w ) then

, with probability >1—14§

(1=l < INYll2 < (1+ &)I¥l2

- Let y denote I'I)7 and let N(j) denote the j row of N.
- Foranyj, y ), %)

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection. d: original dim. m: compressed dim, e: error, §: failure prob.




DISTRIBUTIONAL JL PROOF

7

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O (@) then
, with probability >1—14§

(1=l < INYll2 < (1+ &)I¥l2

Let y denote My and let N(j) denote the j* row of M.
C e /\/.\-’_:-\’\"fool)dk}(.
* Forany j, §(j) = (N(), )

P

() =l < /G

01 -12 34 67 .10 —49.. ‘ Y2 - b
V3

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection. d: original dim. m: compressed dim, e: error, §: failure prob.




DISTRIBUTIONAL JL PROOF

7

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O (@) then
ARSI
, with probability >1—14§

(1=l < INYll2 < (1+ &)I¥l2

- Let y denote Ny and let N(j) denote the j row of N.
-+ Forany j, ¥(j) = (N().Y) = 1., g - ¥(i) where g ~ A(0,1/m).
n /./

—_— y

L - 4, Nv Ny 1§ 2
3 C /R\ ()I“> B e_a@s;o) 10 —49.. g:

—

Ya

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection. d: original dim. m: compressed dim, e: error, §: failure prob.




DISTRIBUTIONAL JL PROOF

- Lety denote I'Iy and let N(j) denote the j row of N.
+ Forany j, y(j) j),9) = S, - ¥(i) where g; ~ N(0,1/m).

—_—

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable. 6




DISTRIBUTIONAL JL PROOF

- Lety denote I'Iy and let N(j) denote the j row of N.

- Foranyj, y J),V) = Z, 18i - ¥(i) where g; ~ N/(0,1/m).
(I) ~ N(0, ) ) normally distributed

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable. 6




DISTRIBUTIONAL JL PROOF

- Lety denote I'Iy and let N(j) denote the j row of N.

* Foranyj, y )7> Z; 18-y ()Where giNJ\/(O,1/m).
- g -y(i) ~ N(0, ()) normally distributed

variance 1/m variance y(i)z/m

(_l_\ |
I 1

VANVAN

9 g9: vy

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable. 6




DISTRIBUTIONAL JL PROOF

- Lety denote I'Iy and let N(j) denote the j row of N.
- Forany j, y(j) )7 =L 18 - V(i) where g ~ N(0,1/m).
- g V(i) ~ N(O, ()) normally distributed

varlancez(l) vanance ::2 variancey(d)2
48

AAA

i0)=%@'ym + 02 Y@ + o + gy Y(@)]

—_— ~ -

¥ € RY: arbitrary vector, §j € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable.




DISTRIBUTIONAL JL PROOF

- Lety denote I'Iy and let N(j) denote the j row of N.

* Foranyj, y )7> Z; 18-y ()Where giNJ\/(O,1/m).
- g -y(i) ~ N(0, ()) normally distributed

variance y(1)? . , variance y(d)?
o~ Vvariance y(2) "

I\ A
I Vo 1 I 1

A+A+ j\

() = ﬁ[gl YA + g2 YD) + et gn @)

¥ € RY: arbitrary vector, §j € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable.




DISTRIBUTIONAL JL PROOF

- Lety denote I'Iy and let N(j) denote the j row of N.

* Foranyj, y )7> Z; 18-y ()Where giNJ\/(O,1/m).
- g -y(i) ~ N(0, ()) normally distributed

. 2 i 2
variance y(1) variance y(2)? vanance%)

o —
I\ | ) A
I Vo 1 I 1

A+A+ j\

() = j%[gl YA + g2 YD) + et gn (@]

Also Gaussian!

¥ € RY: arbitrary vector, §j € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable.




DISTRIBUTIONAL JL PROOF

Letting y = Ny, we have y(j) = (N(j), V) and:

d -
i@: Zgi -y(i) where g; - (i) ~ N (075/(’) > .

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

Letting y = Ny, we have y(j) = (N(j), V) and:

d Lo
§0) = > g - 7i) where g - 7(i) ~ N (o, Y(’)> .

i=1

Stability of Gaussian Random Variables. For an~
N(m,0%) and b ~ N (1, 02) we have:

a+b~N(u + p, 01 + 03)
_—

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

Letting y = Ny, we have y(j) = (N(j), V) and:

d Lo
§0) = > g - 7i) where g - 7(i) ~ N (o, Y(’)> .

i=1

Stability of Gaussian Random Variables. For an~
N(m,0%) and b ~ N (1, 02) we have:

a+b~N(u + p, 01 + 03)

VANYINLIVANS

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

Letting y = Ny, we have y(j) = (N(j), V) and:

d Y
y(j) = ;gi (i) where g; - (i) ~ N @ﬁg) .

Stability of Gaussian Random Variables. For an~
N(w,0%) and b ~ N (1, 0%) we have:

a+b~ N+ i, 97 + 03)

Thus, y(j)NN(o,M+M+m+y(d)2)

—_— — —_— -~

¥ € RY: arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

Letting y = Ny, we have y(j) = (N(j), V) and:

d Lo
§0) = > g - 7i) where g - 7(i) ~ N (o, Y(’)> .

i=1

Stability of Gaussian Random Variables. For an~
N(m,0%) and b ~ N (1, 02) we have:

a+b~N(u + p, 01 + 03)

Thus, y(j) ~ N(0,

[

~—

¥ € RY: arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

Letting y = Ny, we have y(j) = I'I(/ )Q_and o AT

o oo 0%
()= g 70) where g 70) ~ x (021,
D)
Stability of Gaussian Random Variables. For an~

N(m,0%) and b ~ N (1, 02) we have:

“bm@

__Thus, y(j) ~ N(0, ) l.e, ¥ itself is a random Gaussian vector.

¥ € RY: arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as N'(0,1/m),
forany y € RY, letting ¥ = My

Y() ~ N0, 1713/ m).

¥ € RY arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as N'(0,1/m),
forany y € RY, letting y = My

V(i) ~ N (0, [I1I3/m).
What is E[||Y]|5]?

D

¥ € RY arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as N'(0,1/m),
forany y € RY, letting y = My

Y() ~ N0, 1713/ m).

E[IyI2] =E | > _¥0)’

¥ € RY arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as N'(0,1/m),
forany y € RY, letting y = My

§(7) ~ N0, [713/m). N

~ e §) El- §3>
m E[ l)J_\ l\'l.
BIR - | SO507| =S Em0n

¥ € RY arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as N'(0,1/m),
forany y € RY, letting y = My

) ~ N0, 7]/ m)

E[FIE =B |> 67| =)
=1 =

¥ € RY arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as N'(0,1/m),
forany y € RY, letting y = My

Y() ~ N0, 1713/ m).

(9151 =E | > 90)*| =D EF()]
j=1

¥ € RY arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as N'(0,1/m),
forany y € RY, letting y = My

Y() ~ N0, 1713/ m).

B9 =E | > V06)*| =D _EF()]
- j=1 j=1

m -
_ Z 17113 _

— m

j=1

_

¥ € RY arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as N'(0,1/m),
forany y € RY, letting y = My

30)) ~ A0, 172/ m). £3G) =0
N &0 L

B9 =E | >_V06)*| =D _EF()]
— j=1 j=1

m -
_ Z 17113 _

— m

j=1

E—

So y has the right norm in expectation.

¥ € RY arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as N'(0,1/m),
forany y € RY, letting y = My

Y() ~ N0, 1713/ m).

E(9IE1 =E | > 06| =D EHG)]
j=1 j=1

m -
_ Z 17113 _
~ m
j=1
So y has the right norm in expectation.

/———”—
¥ € RY arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as
N(0,1), for any y € RY letting y = Ny:

Y(j) ~ N (0, [¥l15/m) and E[|I§1I3] = [I¥1I3

1
T .

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): jt" row of N, d: original dimension. m: com-
pressed dimension, e embedding error, 6: embedding failure prob.




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as
%&\N(O, P for any y € R, letting § = Ny:

9(]) ~ N0, [[¥3/m) and E[|[y[15] = [I¥]l2

9= >,
{a sum ofm squared independent Gaussians)

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): jt" row of N, d: original dimension. m: com-
pressed dimension, e embedding error, 6: embedding failure prob.




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as
ﬁ -N(0,1), for any ¥ € RY letting § = Ny:

Y(j) ~ N0, [I7ll5/m) and E[|[§]15] = [I¥1]2
19112 = =i, ¥(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)

filz) X

0.5

0.4

0.3

folE ol ol ol
| L L L L

0.0
0

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): jt" row of N, d: original dimension. m: com-
pressed dimension, e embedding error, 6: embedding failure prob.




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as
ﬁ -N(0,7), for any y € RY, letting y = My
Y(j) ~ N(0, [[¥13/m) and E[[I3] = [I¥]12

1915 = X212 9(7)* a
(a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr|Z — EZ| > eEZ] < 2e~™</8,
— ~— —

—

¥ € RY arbitrary vector, §j € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, e: embedding error, §: embedding failure prob. 9




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as
ﬁ -N(0,1), for any ¥ € RY letting § = Ny:

() ~ N (0, [71/m) and E[|3I3] = 713
9B =S, 90) a iy

(a sum of m squared independent Gaussians) fcl e q)\aé“ 0

: . . A
Lemma: (Chi-Squared Concentration) Letting Z /e a Ch|- &8
Squared random variable with m degrees of freeflom e UL;]

_ 7”’762/8 z .
Pri|Z —EZ| > eEZ] <2e"T°/°. oz _ala\(”g/\
T e O((O

t

If we set m = 0 (2/%)), with probability 1— O(e~ /) > 1 —5:
— \ ( ;
™IRO (- I < B < 1+ QT

¥ € RY arbitrary vector, §j € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, e: embedding error, §: embedding failure prob. 9




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as
ﬁ -N(0,1), for any ¥ € RY letting § = Ny:

y(j) ~ N (0, |IlI3/m) and E[[[§]13] = (VI3
19112 = =i, ¥(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr|Z — EZ| > eEZ] < 2e~™</8,

If we setm =0 (log(l/5)> with probability 1 — 0(e~08(1/9)) > 1 — §:
«
(1= a)lIVI5 < 1915 < (1 + o173

Gives the distributional JL Lemma and thus the classic JL Lemma!



EXAMPLE APPLICATION: R-MEANS CLUSTERING

Goal: Separate n points in d dimensional space into k groups.

10



EXAMPLE APPLICATION: R-MEANS CLUSTERING

Goal: Separate n points in d dimensional space into k groups.

--L-

-
o ° .#3
o
Y e
P ([
o
k-means Objective: Cost(Cy,...,Cr) = m|n ZZHX — w3

f 1 XEC};,

~ —

10



EXAMPLE APPLICATION: R-MEANS CLUSTERING

Goal: Separate n points in d dimensional space into k groups.

A
iz,

o
k-means Objective: Cost(Cy,...,Cr) = m|n ZZHX 113

f 1 XEC};,
Write in terms of distances:

Cost(Cy, ..., Cq) = mm Z Z 1% — %53

j =1 X‘\,XZECR 10



EXAMPLE APPLICATION: R-MEANS CLUSTERING

k-means Objective: Cost(C,...,Cr) = m|n Z > 1% -l

/ 1 %,%€C,



EXAMPLE APPLICATION: R-MEANS CLUSTERING

k-means Objective: Cost(C,...,Cr) = m|n Z > 1% -l

/ 1 %,%€C,

If we randomly projecttom =0 (

) dimensions, for all pairs X, X,
\

u1 = IK =R l3 < 1% = %all3 < (1+ o)1 — %3



EXAMPLE APPLICATION: R-MEANS CLUSTERING

k-means Objective: Cost(C,...,Cr) = m|n Z > |x1 — %2

/ 1 %,%€C,

If we randomly projecttom =0 (loe%”

) dimensions, for all pairs X, X,

(1= )% = Xl5 < 1% — %3 < (M + oI5 — X} =
_— N —

Letting Cost(Cy, ..., Ck) = Jmin Z > ||x1—x2\|2

; =1 x1,xZeC,e

(1 —€)Cost(Cy, ..., Cr) < Cost(Cy,...,Cr) < (14 €)Cost(Ca,...,Ck).



EXAMPLE APPLICATION: R-MEANS CLUSTERING

k-means Objective: Cost(C,...,Cr) = m|n Z > 1% -l

/ 1 %,%€C,

If we randomly projecttom =0 (loe%”

) dimensions, for all pairs X, X,

(1= o)lI% = Xl5 < 1% — %3 < (M + I — X} =

Letting Cost(Cy, ..., Ck) = Jmin Z > IK = %3

; =1 X1,%€Cy

(1 —€)Cost(Cy, ..., Cr) <Lost(Cy,...,Cr) < (T+ e)C%, Cr).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(Cs, ..., Ck). The optimal set of clusters
will have true cost within 1+ ce times the true optimal. Good

rci r his. v
exercise to prove t Yo



The Johnson-Lindenstrauss Lemma and High

Dimensional Geometry
/\



The Johnson-Lindenstrauss Lemma and High
Dimensional Geometry

- High-dimensional Euclidean space looks very different from
low-dimensional space. So how can JL WOI’_|S<?V&J_

- Is Euclidean distance in high-dimensional‘meaningless,
making JL useless? (The curse of dimensionality)



ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in
d-dimensional space?

a)1 b)logd ovd |d)d

-\



ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in
d-dimensional space?

a)1 b)logd ovd d)d



NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that
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NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that
have all pairwise dot products |(X,y)| < €? (think e = .01)

a)d b) ©(d) c) O(d?) d) 20()

In fact, an exponentially large set of random vectors will be nearly
pairwise orthogonal with high probability!
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ORTHOGONAL VECTORS PROOF
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Claim: 29(¢9) random d-dimensional unit vectors will have all
pairwise dot products |(X,y)| < e (be nearly orthogonal) with high
probability.
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Claim: 2°2(¢9) random d-dimensional unit vectors will have all
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Claim: 2°2(¢9) random d-dimensional unit vectors will have all

pairwise dot products |(X,y)| < e (be nearly orthogonal) with high
probability.

Proof: Let X;, ..., X; each have independent random entries set to
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ORTHOGONAL VECTORS PROOF
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Claim: 29(¢d) random d- dlmen5|onal unit vectors will have all
pairwise dot products |(X,y)| < e (be nearly orthogonal) with high

probability.
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ORTHOGONAL VECTORS PROOF

Claim: 2°2(¢9) random d-dimensional unit vectors will have all
——

pairwise dot products |(X,y)| < e (be nearly orthogonal) with high
probability.

Proof: Let X;, ..., X; each have independent random entries set to

+1//d.

= What is [[X||,? Every X; is always a unit vector.

= What is E[(X,X)]? E[(X;,X;)] = 0

. % X —€d/6 (or .
By a Chernoff bound, Pr[[(X;,X)| > €] <2e™“°/C (great exercise).

- If we chose t = %eezd/‘z, using a union bound over all (}) < %eﬁzd/f’
possible pairs, with probability > 3/4 all will be nearly orthoéﬁﬁal.
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CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of 22(€’d) random unit
vectors have all pairwise dot products at most e (think e = .01)
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CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of 22(€’d) random unit
vectors have all pairwise dot products at most e (think e = .01)

X5 = %113 = 113 + 15112 — 2X1%;

— T .
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CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of 22(€’d) random unit
vectors have all pairwise dot products at most e (think e = .01)

X = %115 = %3115 + [1%]15 — 2%/%; € [1.98,2.02]:

Even with an exponential number of random vector samples,
we don't see any nearby vectors.

- One version of the ‘curse of dimensionality.

-] 1f all your distances are roughly the same, distance based
methods (k-means clustering, nearest neighbors, SVMs, etc.)
aren’t going to work well.

- Distances are only meaningful if we have lots of structure
and our data isn't just independent random vectors.
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CURSE OF DIMENSIONALITY

Distances for MNIST Digits:
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Distances for Random Images:

x10”

Another Interpretation: Tells us that random data can be a very b
model for actual input data. 17



CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if
N < R4 is a random matrix (linear map) with m = 0 (log”>,

for X;,..., X, € R? with high probability, for all i, :

(1= )l = %[5 < [NX; - NX[3 < (1 + 1% — X2
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CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if
N < R4 is a random matrix (linear map) with m = 0 (log”>,

for X;,..., X, € R? with high probability, for all i, :

(1= )l = %[5 < [NX; - NX[3 < (1 + 1% — X2

Implies: If Xi,...,X, are nearly orthogonal unit vectors in
d-dimensions (with pairwise dot products bounded by ¢/8),
then ¥ . M 5re nearly orthogonal unit vectors in

x> Ml
m-dimensions (with pairwise dot products bounded by e).

- Algebra is a bit messy but a good exercise to partially work
through.

18



CONNECTION TO DIMENSIONALITY REDUCTION

Claim 1: n nearly orthogonal unit vectors can be projected to
m=20 (l"%) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 20(¢™) nearly
orthogonal vectors.
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Claim 2: In m dimensions, there are at most 20(¢™) nearly
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- For both these to hold it must be that n < 20(¢m),

- 20(e?m) — 70(logn) > n Tells us that the JL lemma is optimal
up to constants.
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CONNECTION TO DIMENSIONALITY REDUCTION

Claim 1: n nearly orthogonal unit vectors can be projected to
m=20 (l"%) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 20(¢™) nearly
orthogonal vectors.

- For both these to hold it must be that n < 20(¢m),

- 20(em) = 20(logn) > n Tells us that the JL lemma is optimal
up to constants.

- m is chosen just large enough so that the odd geometry of
d-dimensional space still holds on the n points in question
after projection to a much lower dimensional space.
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