COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2021.

Lecture 12

LOGISTICS

- · Problem Set 2 is due Friday, 11:59pm.
- · Quiz 6 is due today at 8pm.
- The exam will be held next Tuesday in class. Let me know ASAP if you need accommodations (e.g., extended time).
- We will do some midterm review in class on Thursday. I will also hold additional office hours for midterm prep, next Monday, 4-6pm, and potentially Friday afternoon as well.

-Prefice problems on schoole.

SUMMARY

Last Class: The Johnson-Lindenstrauss Lemma

- Low-distortion embeddings for any set of points via random projection.
- Started on proof of the JL Lemma via the Distributional JL Lemma.

Last Class: The Johnson-Lindenstrauss Lemma

- Low-distortion embeddings for any set of points via random projection.
- Started on proof of the JL Lemma via the Distributional JL Lemma.

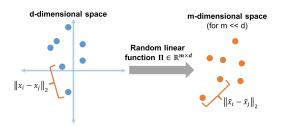
This Class:

- · Finish Up proof of the JL lemma.
- · Example applications to classification and clustering.
- · Discuss connections to high dimensional geometry.

THE JOHNSON-LINDENSTRAUSS LEMMA

Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $\Pi : \mathbb{R}^d \to \mathcal{R}^m$ such that $m = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = \Pi \vec{x}_i$:

For all
$$i, j: (1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$$
.

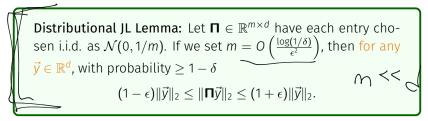

Further, if $\Pi \in \mathbb{R}^{m \times d}$ has each entry chosen i.i.d. from $\mathcal{N}(0,1/m)$ and $m = O\left(\frac{\log n/\delta}{\epsilon^2}\right)$, Π satisfies the guarantee with probability $\geq 1 - \delta$.

THE JOHNSON-LINDENSTRAUSS LEMMA

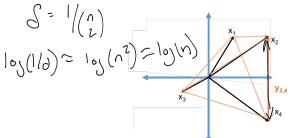
Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $\mathbf{\Pi} : \mathbb{R}^d \to R^m$ such that $m = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = \mathbf{\Pi} \vec{x}_i$:

For all
$$i, j : (1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$$
.

Further, if $\Pi \in \mathbb{R}^{m \times d}$ has each entry chosen i.i.d. from $\mathcal{N}(0,1/m)$ and $m = O\left(\frac{\log n/\delta}{\epsilon^2}\right)$, Π satisfies the guarantee with probability $\geq 1-\delta$.


DISTRIBUTIONAL JL

We showed that the Johnson-Lindenstrauss Lemma follows from:


Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$ $(1 - \epsilon) \|\vec{y}\|_2 \leq \|\Pi\vec{y}\|_2 \leq (1 + \epsilon) \|\vec{y}\|_2.$

DISTRIBUTIONAL JL

We showed that the Johnson-Lindenstrauss Lemma follows from:

Main Idea: Union bound over $\binom{n}{2}$ difference vectors $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{V} \in \mathbb{R}^d$, with probability $> 1 - \delta$

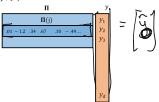
$$(1 - \epsilon) \|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1 + \epsilon) \|\vec{y}\|_2$$

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{V} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1 - \epsilon) \|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1 + \epsilon) \|\vec{y}\|_2$$

· Let $\underline{\tilde{y}}$ denote $\underline{\Pi}\underline{\vec{y}}$ and let $\underline{\Pi}(\underline{j})$ denote the \underline{j}^{th} row of Π .

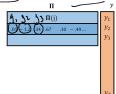
Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$


$$(1 - \epsilon) \|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1 + \epsilon) \|\vec{y}\|_2$$

- · Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\widetilde{\underline{y}(j)} = \langle \Pi(j), \vec{y} \rangle$

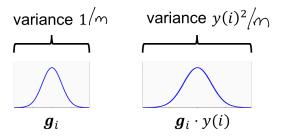
Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

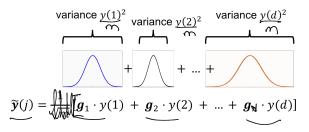
$$(1 - \epsilon) \|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1 + \epsilon) \|\vec{y}\|_2$$


- · Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$

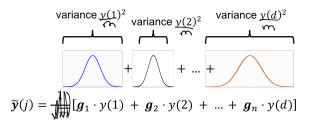
Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1 - \epsilon) \|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1 + \epsilon) \|\vec{y}\|_2$$

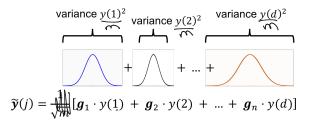

- · Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\underline{\tilde{y}(j)} = \langle \underline{\Pi(j)}, \underline{\tilde{y}} \rangle = \sum_{i=1}^{d} \underline{g_i \cdot \tilde{y}(i)}$ where $\underline{g_i} \sim \mathcal{N}(0, 1/m)$.


- · Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\mathbf{\tilde{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\underline{\tilde{y}(j)} = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^d \mathbf{g}_i \cdot \underline{\vec{y}}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \frac{\vec{y}(i)^2}{m})$: normally distributed with variance $\frac{\vec{y}(i)^2}{m}$.


- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^d \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \frac{\vec{y}(i)^2}{m})$: normally distributed with variance $\frac{\vec{y}(i)^2}{m}$.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^d \mathbf{g}_i \cdot \vec{\mathbf{y}}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \frac{\vec{y}(i)^2}{m})$: normally distributed with variance $\frac{\vec{y}(i)^2}{m}$.



- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^d \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \frac{\vec{y}(i)^2}{m})$: normally distributed with variance $\frac{\vec{y}(i)^2}{m}$.

What is the distribution of $\tilde{y}(j)$?

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^d \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \frac{\vec{y}(i)^2}{m})$: normally distributed with variance $\frac{\vec{y}(i)^2}{m}$.

What is the distribution of $\tilde{y}(j)$? Also Gaussian!

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\underbrace{\tilde{\mathbf{y}}(j)} = \sum_{i=1}^d \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}\left(0, \frac{\vec{\mathbf{y}}(i)^2}{m}\right).$$

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_{i} \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}\left(0, \frac{\vec{\mathbf{y}}(i)^{2}}{m}\right).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a+b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_{i} \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}\left(0, \frac{\vec{\mathbf{y}}(i)^{2}}{m}\right).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_{i} \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}\left(0, \frac{\vec{\mathbf{y}}(i)^{2}}{m}\right).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus,
$$\underline{\tilde{y}(j)} \sim \mathcal{N}(\underline{0}, \underline{\frac{\vec{y}(1)^2}{m}} + \underline{\frac{\vec{y}(2)^2}{m}} + \ldots + \underline{\frac{\vec{y}(d)^2}{m}})$$

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_{i} \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}\left(0, \frac{\vec{\mathbf{y}}(i)^{2}}{m}\right).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus,
$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \frac{\|\vec{\mathbf{y}}\|_2^2}{m})$$

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
$$\tilde{\mathbf{y}}(j) = \sum_{i=1}^d \mathbf{g}_i \cdot \vec{y}(i) \text{ where } \mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^2}{m}\right).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have: $a + b \left(\overbrace{\mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)} \right)$

Thus, $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \frac{\|\tilde{\mathbf{y}}\|_2^2}{m})$ I.e., $\tilde{\mathbf{y}}$ itself is a random Gaussian vector.

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$: $\underbrace{\tilde{\mathbf{y}}(j)} \sim \mathcal{N}(0, ||\vec{y}||_2^2/m).$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right]$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

$$\text{What is } \mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]?$$

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E}\left[\sum_{j=1}^m \tilde{\mathbf{y}}(j)^2\right] = \sum_{j=1}^m \mathbb{E}[\tilde{\mathbf{y}}(j)^2]$$

$$= \mathbb{E}[\tilde{\mathbf{y}}(j)^2] = \mathbb{E}[\tilde{\mathbf{y}}(j)^2]$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\underbrace{\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}]}_{\mathbf{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}]} = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$
$$= \sum_{j=1}^{m} \frac{\|\vec{\mathbf{y}}\|_{2}^{2}}{m}$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$

$$= \sum_{j=1}^{m} \frac{\|\vec{\mathbf{y}}\|_{2}^{2}}{m} = \|\vec{\mathbf{y}}\|_{2}^{2}$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(\mathbf{0}, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$

$$= \sum_{j=1}^{m} \frac{\|\vec{\mathbf{y}}\|_{2}^{2}}{m} = \frac{\|\vec{\mathbf{y}}\|_{2}^{2}}{m}$$

So $\tilde{\mathbf{y}}$ has the right norm in expectation.

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$
$$= \sum_{j=1}^{m} \frac{\|\vec{\mathbf{y}}\|_{2}^{2}}{m} = \|\vec{\mathbf{y}}\|_{2}^{2}$$

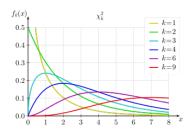
So $\tilde{\mathbf{y}}$ has the right norm in expectation.

How is $\|\tilde{\mathbf{y}}\|_2^2$ distributed? Does it concentrate?

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0,1)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\boldsymbol{\tilde{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m) \text{ and } \mathbb{E}[\|\boldsymbol{\tilde{y}}\|_2^2] = \|\vec{y}\|_2^2$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1)$ for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:


$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{\mathbf{y}}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{j=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0,1)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{\mathbf{y}}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0,1)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{y}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting ${\bf Z}$ be a Chi-Squared random variable with m degrees of freedom,

$$\Pr[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}] \le 2e^{-m\epsilon^2/8}.$$

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0,1)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{y} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{y}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with m degrees freedom (a sum of m squared independent Gaussians)

 $\Pr[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}] \le 2e^{-m\epsilon^2/8}$. $2 \cdot e^{\xi \iota}$

If we set $m = O(\frac{\log(1/\delta)}{\epsilon^2})$, with probability $1 - O(e^{-\log(1/\delta)}) \ge 1 - \delta$:

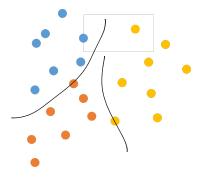
$$\vec{y} \in \mathbb{R}^d$$
: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d : original dimension. m : compressed dimension, ϵ : embedding error, δ : embedding failure prob.

 $(1 - \epsilon) \|\vec{y}\|_2^2 \le \|\tilde{\mathbf{y}}\|_2^2 \le (1 + \epsilon) \|\vec{y}\|_2^2.$

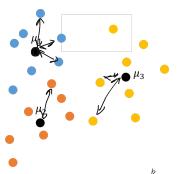
So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0,1)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{y}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

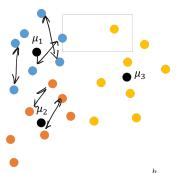

Lemma: (Chi-Squared Concentration) Letting ${\bf Z}$ be a Chi-Squared random variable with m degrees of freedom,

$$\Pr[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}] \le 2e^{-m\epsilon^2/8}.$$


If we set
$$\underline{m} = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$$
, with probability $1 - O(e^{-\log(1/\delta)}) \ge 1 - \delta$:
$$(1 - \epsilon)\|\vec{y}\|_2^2 \le \|\tilde{\mathbf{y}}\|_2^2 \le (1 + \epsilon)\|\vec{y}\|_2^2.$$

Gives the distributional JL Lemma and thus the classic JL Lemma!

Goal: Separate n points in d dimensional space into k groups.



Goal: Separate *n* points in *d* dimensional space into *k* groups.

k-means Objective:
$$Cost(C_1, ..., C_k) = \min_{C_1, ..., C_k} \sum_{j=1}^{\kappa} \sum_{\vec{x} \in C_k} ||\vec{x} - \mu_j||_2^2$$
.

Goal: Separate *n* points in *d* dimensional space into *k* groups.

k-means Objective:
$$Cost(C_1, ..., C_k) = \min_{C_1, ..., C_k} \sum_{i=1}^k \sum_{\vec{v} \in C_i} ||\vec{x} - \mu_j||_2^2$$
.

Write in terms of distances:

$$Cost(C_1,...,C_k) = \min_{C_1,...C_k} \sum_{i=1}^{\kappa} \sum_{\vec{X}_1,\vec{X}_2 \in C_k} ||\vec{X}_1 - \vec{X}_2||_2^2$$

k-means Objective:
$$Cost(C_1, \dots, C_k) = \min_{C_1, \dots, C_k} \sum_{i=1}^k \sum_{\vec{X}_1, \vec{X}_2 \in C_k} ||\vec{X}_1 - \vec{X}_2||_2^2$$

k-means Objective:
$$Cost(C_1, \dots, C_k) = \min_{C_1, \dots C_k} \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in C_k} ||\vec{x}_1 - \vec{x}_2||_2^2$$

If we randomly project to $\underline{m = O\left(\frac{\log n}{\epsilon^2}\right)}$ dimensions, for all pairs $\vec{x}_1, \vec{x}_2, \dots$

k-means Objective:
$$Cost(C_1, \dots, C_k) = \min_{C_1, \dots, C_k} \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in C_k} ||\vec{x}_1 - \vec{x}_2||_2^2$$

If we randomly project to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, for all pairs \vec{x}_1, \vec{x}_2 ,

$$(\underbrace{1-\epsilon})\|\vec{x}_1-\vec{x}_2\|_2^2 \leq \|\tilde{\mathbf{x}}_1-\tilde{\mathbf{x}}_2\|_2^2 \leq (1+\epsilon)\|\vec{x}_1-\vec{x}_2\|_2^2 \implies$$

Letting
$$\overline{Cost}(C_1, \dots, C_k) = \min_{C_1, \dots C_k} \sum_{j=1}^{\kappa} \sum_{\tilde{\mathbf{x}}_1, \tilde{\mathbf{x}}_2 \in C_k} \|\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2\|_2^2$$

$$(1-\epsilon)\operatorname{Cost}(\mathcal{C}_1,\ldots,\mathcal{C}_k) \leq \overline{\operatorname{Cost}}(\mathcal{C}_1,\ldots,\mathcal{C}_k) \leq (1+\epsilon)\operatorname{Cost}(\mathcal{C}_1,\ldots,\mathcal{C}_k).$$

k-means Objective:
$$Cost(C_1, \dots, C_k) = \min_{C_1, \dots, C_k} \sum_{j=1}^R \sum_{\vec{x}_1, \vec{x}_2 \in C_k} ||\vec{x}_1 - \vec{x}_2||_2^2$$

If we randomly project to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, for all pairs \vec{x}_1, \vec{x}_2 ,

$$(1 - \epsilon) \|\vec{x}_1 - \vec{x}_2\|_2^2 \le \|\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2\|_2^2 \le (1 + \epsilon) \|\vec{x}_1 - \vec{x}_2\|_2^2 \implies$$

Letting
$$\overline{Cost}(\mathcal{C}_1, \dots, \mathcal{C}_k) = \min_{\mathcal{C}_1, \dots \mathcal{C}_k} \sum_{j=1}^k \sum_{\tilde{\mathbf{x}}_1, \tilde{\mathbf{x}}_2 \in \mathcal{C}_k} \|\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2\|_2^2$$

$$(1-\epsilon)$$
Cost (C_1,\ldots,C_k) \leq $\overline{\text{Cost}}(C_1,\ldots,C_k)$ \leq $(1+\epsilon)$ Cost (C_1,\ldots,C_k) .

Upshot: Can cluster in m dimensional space (much more efficiently) and minimize $\overline{Cost}(\mathcal{C}_1,\ldots,\mathcal{C}_k)$. The optimal set of clusters will have true cost within $1+c\epsilon$ times the true optimal. Good exercise to prove this.

The Johnson-Lindenstrauss Lemma and High Dimensional Geometry

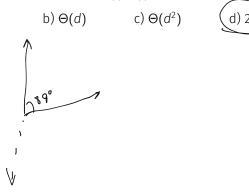
The Johnson-Lindenstrauss Lemma and High Dimensional Geometry

- High-dimensional Euclidean space looks very different from low-dimensional space. So how can JL work?
- Is Euclidean distance in high-dimensional meaningless, making JL useless? (The curse of dimensionality)

ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in

ORTHOGONAL VECTORS


What is the largest set of mutually orthogonal unit vectors in d-dimensional space?

- a) 1 b) $\log d$ c) \sqrt{d} d) d

NEARLY ORTHOGONAL VECTORS

a) d

What is the largest set of unit vectors in *d*-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$? (think $\epsilon = .01$)

NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$? (think $\epsilon = .01$)

a) d

- b) $\Theta(d)$
- c) $\Theta(d^2)$

d) $2^{\Theta(d)}$

NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$? (think $\epsilon = .01$)

- a) d
- b) $\Theta(d)$ c) $\Theta(d^2)$

d) $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$ (be nearly orthogonal) with high probability.

+

Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$ (be nearly orthogonal) with high probability.

Proof: Let $\vec{x}_1, \dots, \vec{x}_t$ each have independent random entries set to

 $\pm 1/\sqrt{d}$.

[1/2, -1/3, 1/3

Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| < \epsilon$ (be nearly orthogonal) with high probability.

Proof: Let $\vec{x}_1, \dots, \vec{x}_t$ each have independent random entries set to

• What is
$$\mathbb{E}[\langle \vec{x_i}, \vec{x_j} \rangle]$$
?

Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$ (be nearly orthogonal) with high probability.

Proof: Let $\vec{x}_1, \dots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

- What is $\|\vec{x}_i\|_2$? Every \vec{x}_i is always a unit vector.
- What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$?

Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$ (be nearly orthogonal) with high probability.

Proof: Let $\vec{x}_1, \dots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

- What is $\|\vec{x}_i\|_2$? Every \vec{x}_i is always a unit vector.
- What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$? $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = 0$

$$\|x_i\|_2 = \sqrt{2x_i(j)^2} = \sqrt{1} = 1$$

Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| < \epsilon$ (be nearly orthogonal) with high probability.

Proof: Let $\vec{x}_1, \dots, \vec{x}_t$ each have independent random entries set to

$$\begin{array}{c|c} \pm 1/\sqrt{d}. & |z| < |z$$

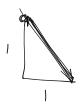
• What is
$$\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$$
? $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = 0$
 $\langle x_i, x_i \rangle = \sum_{i \in S} \mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = 1$

• What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$? $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = 0$ • By a Chernoff bound, $\Pr[|\langle \vec{x}_i, \vec{x}_j \rangle| \ge \epsilon] \le 2e^{-\epsilon^2 d/6}$ (great exercise).

$$[|\langle \vec{\mathbf{x}}_i, \vec{\mathbf{x}}_j \rangle| \ge \epsilon] \le 2e^{-\epsilon^2 d/6}$$

15

Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$ (be nearly orthogonal) with high probability.


Proof: Let $\vec{x}_1, \dots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

- What is $\|\vec{x}_i\|_2$? Every \vec{x}_i is always a unit vector.
- What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$? $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = 0$
- By a Chernoff bound, $\Pr[|\langle \vec{x}_i, \vec{x}_j \rangle| \ge \epsilon] \le 2e^{-\epsilon^2 d/6}$ (great exercise).
- If we chose $t=\frac{1}{2}e^{\epsilon^2d/12}$, using a union bound over all $\binom{t}{2} \leq \frac{1}{8}e^{\epsilon^2d/6}$ possible pairs, with probability $\geq 3/4$ all will be nearly orthogonal.

$$\|\vec{x}_i - \vec{x}_j\|_2^2$$

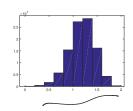
$$||\vec{x}_i - \vec{x}_j||_2^2 = ||\vec{x}_i||_2^2 + ||\vec{x}_j||_2^2 - 2\vec{x}_i^T \vec{x}_j$$

$$\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T \vec{x}_j \in [1.98, 2.02].$$

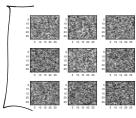
Up Shot: In *d*-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

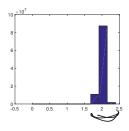
$$\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T \vec{x}_j \in [1.98, 2.02].$$

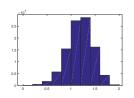
Even with an exponential number of random vector samples, we don't see any nearby vectors.

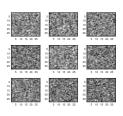

Up Shot: In d-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

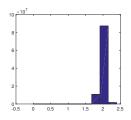
Even with an exponential number of random vector samples, we don't see any nearby vectors.


- · One version of the 'curse of dimensionality'.
- If all your distances are roughly the same, distance based methods (k-means clustering, nearest neighbors, SVMs, etc.) aren't going to work well.
- Distances are only meaningful if we have lots of structure and our data isn't just independent random vectors.


Distances for MNIST Digits:


Distances for Random Images:




Distances for MNIST Digits:

Distances for Random Images:

Another Interpretation: Tells us that random data can be a very back model for actual input data.

17

Recall: The Johnson Lindenstrauss lemma states that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2 \le \|\mathbf{\Pi}\vec{x}_i - \mathbf{\Pi}\vec{x}_j\|_2^2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2.$$

Recall: The Johnson Lindenstrauss lemma states that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2 \le \|\mathbf{\Pi}\vec{x}_i - \mathbf{\Pi}\vec{x}_j\|_2^2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2.$$

Implies: If $\vec{x}_1, \ldots, \vec{x}_n$ are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon/8$), then $\frac{\Pi \vec{x}_1}{\|\Pi \vec{x}_1\|_2}, \ldots, \frac{\Pi \vec{x}_n}{\|\Pi \vec{x}_n\|_2}$ are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ).

Recall: The Johnson Lindenstrauss lemma states that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2 \le \|\mathbf{\Pi}\vec{x}_i - \mathbf{\Pi}\vec{x}_j\|_2^2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2.$$

Implies: If $\vec{x}_1, \ldots, \vec{x}_n$ are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon/8$), then $\frac{\Pi \vec{x}_1}{\|\Pi \vec{x}_1\|_2}, \ldots, \frac{\Pi \vec{x}_n}{\|\Pi \vec{x}_n\|_2}$ are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ).

· Algebra is a bit messy but a good exercise to partially work through.

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.

• For both these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$.

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

- For both these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$.
- $\cdot \ 2^{O(\epsilon^2 m)} = 2^{O(\log n)} \ge n.$

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

- For both these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$.
- $2^{O(\epsilon^2 m)} = 2^{O(\log n)} \ge n$. Tells us that the JL lemma is optimal up to constants.

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

- For both these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$.
- $2^{O(\epsilon^2 m)} = 2^{O(\log n)} \ge n$. Tells us that the JL lemma is optimal up to constants.
- m is chosen just large enough so that the odd geometry of d-dimensional space still holds on the n points in question after projection to a much lower dimensional space.