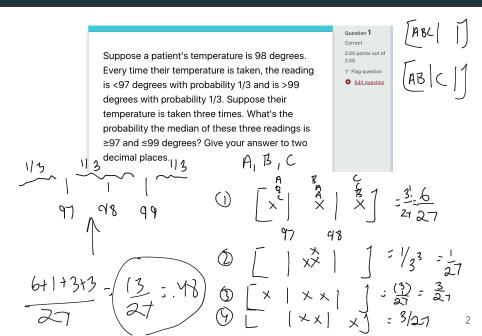
COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2021. Lecture 10

LOGISTICS

- · Problem Set 2 is due next Friday at 11:59pm.
- The midterm is will in class on Tuesday 10/19. Midterm study material has been posted in the Schedule Tab and in Moodle.

WEEK 5 QUIZ



SUMMARY

Last Class:

- · Locality sensitive hashing for near neighbor search.
- MinHash as a locality sensitive hash function for Jaccard similarity
- Balancing false positives and negatives with LSH signatures and repeated hash tables.

Last Class:

- · Locality sensitive hashing for near neighbor search.
- MinHash as a locality sensitive hash function for Jaccard similarity
- Balancing false positives and negatives with LSH signatures and repeated hash tables.

This Class:

- · Finish up LSH: SimHash for cosine similarity.
- · Frequent Items Estimation
- · Count-min sketch algorithm

UPCOMING

Next Few Classes:

- Random compression methods for high dimensional vectors. The Johnson-Lindenstrauss lemma.
- · Connections to the weird geometry of high-dimensional space.

UPCOMING

Next Few Classes:

- Random compression methods for high dimensional vectors. The Johnson-Lindenstrauss lemma.
- · Connections to the weird geometry of high-dimensional space.

After the Midterm: Spectral Methods

- PCA, low-rank approximation, and the singular value decomposition.
- · Spectral clustering and spectral graph theory.

UPCOMING

Next Few Classes:

- Random compression methods for high dimensional vectors. The Johnson-Lindenstrauss lemma.
- · Connections to the weird geometry of high-dimensional space.

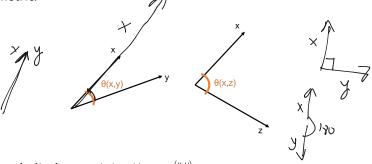
After the Midterm: Spectral Methods

- PCA, low-rank approximation, and the singular value decomposition.
- —Spectral clustering and spectral graph theory.

Will use a lot of linear algebra. May be helpful to refresh.

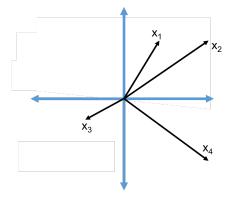
- · Vector dot product, addition, Euclidean norm. Matrix vector multiplication.
- · Linear independence, column span, orthogonal bases, rank.
- · Orthogonal projection, eigendecomposition, linear systems.

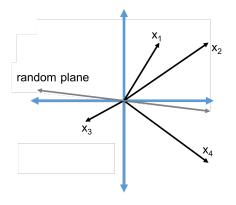
Repetition and s-curve tuning can be used for fast similarity search with any similarity metric, given a locality sensitive hash function for that metric.

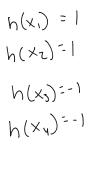


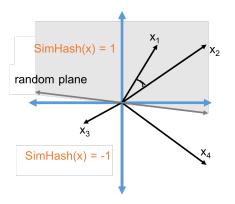
Cosine Similarity:
$$cos(\theta(x,y)) = \frac{\langle x,y \rangle}{\|x\|_2 \cdot \|y\|_2}$$

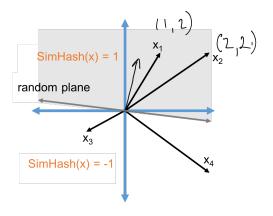
• $\cos(\theta(x,y)) = 1$ when $\theta(x,y) = 0^{\circ}$ and $\cos(\theta(x,y)) = 0$ when $\theta(x,y) = 90^{\circ}$, and $\cos(\theta(x,y)) = -1$ when $\theta(x,y) = 180^{\circ}$.









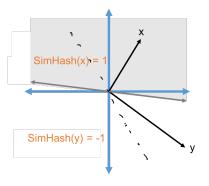


$$SimHash(x) = sign(\langle x, t \rangle)$$
 for a random vector t .

What is Pr[SimHash(x) = SimHash(y)]?

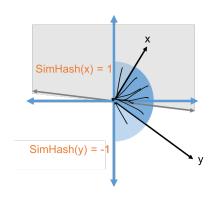
What is Pr[SimHash(x) = SimHash(y)]?

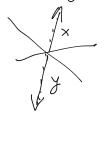
 $SimHash(x) \neq SimHash(y)$ when the plane separates x from y.



What is Pr[SimHash(x) = SimHash(y)]?

 $SimHash(x) \neq SimHash(y)$ when the plane separates x from y.

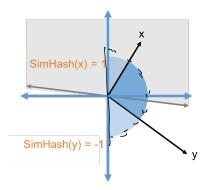




(05(0(x1y

What is Pr[SimHash(x) = SimHash(y)]?

 $SimHash(x) \neq SimHash(y)$ when the plane separates x from y.

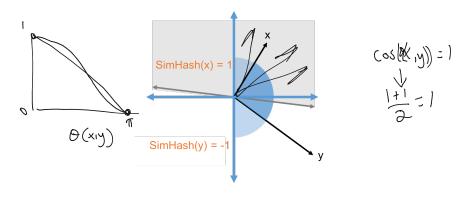


$$\cdot \left[\text{Pr} \left[\text{SimHash}(x) \neq \text{SimHash}(y) \right] = \frac{\theta(x,y)}{\pi} \right]$$

What is Pr[SimHash(x) = SimHash(y)]?

[.2,.3,.5,.2]

 $SimHash(x) \neq SimHash(y)$ when the plane separates x from y.



• Pr [SimHash(x)
$$\neq$$
 SimHash(y)] = $\frac{\theta(x,y)}{\pi}$
• Pr [SimHash(x) = SimHash(y)] = $1 - \frac{\theta(x,y)}{\pi} \approx \frac{\cos(\theta(x,y)) + 1}{2}$

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of *n* items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of *n* items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times. k = 3 $\frac{9}{k} = \frac{9}{3} = 3$

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	x ₈	X ₉
5	12	3	3	4	5	5	10	3

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of *n* items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	X ₈	X ₉
5	12	3	3	4	5	5	10	3

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times. $k \in \mathbb{N}$

X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	X ₈	X ₉
5	12	3	3	4	5	5	10	3

· What is the maximum number of items that can be returned?

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of *n* items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	x ₈	X ₉
5	12	3	3	4	5	5	10	3

- What is the maximum number of items that can be returned? a) n b) R c) n/R d) log n
- Trivial with O(n) space store the count for each item and return the one that appears $\geq n/k$ times.
- · Can we do it with less space? I.e., without storing all *n* items?

Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).
- · 'Iceberg queries' for all items in a database with frequency above some threshold.

Generally want very fast detection, without having to scan through database/logs. I.e., want to maintain a running list of frequent items that appear in a stream.

FREQUENT ITEMSET MINING

Association rule learning: A very common task in data mining is to identify common associations between different events.

- Identified via frequent itemset counting. Find all sets of *t* items that appear many times in the same basket.
- Frequency of an itemset is known as its support.
- A single basket includes many different itemsets, and with many different baskets an efficient approach is critical. E.g., baskets are Twitter users and itemsets are subsets of who they follow.

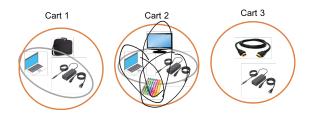
FREQUENT ITEMSET MINING

Association rule learning: A very common task in data mining is to identify common associations between different events.

- Identified via frequent itemset counting. Find all sets of *t* items that appear many times in the same basket.
- · Frequency of an itemset is known as its support.
- A single basket includes many different itemsets, and with many different baskets an efficient approach is critical. E.g., baskets are Twitter users and itemsets are subsets of who they follow.

FREQUENT ITEMSET MINING

Association rule learning: A very common task in data mining is to identify common associations between different events.



- Identified via frequent itemset counting. Find all sets of *t* items that appear many times in the same basket.
- Frequency of an itemset is known as its support.
- A single basket includes many different itemsets, and with many different baskets an efficient approach is critical. E.g., baskets are Twitter users and itemsets are subsets of who they follow.

APPROXIMATE FREQUENT ELEMENTS

Issue: No algorithm using o(n) space can output just the items with frequency $\geq n/k$. Hard to tell between an item with frequency n/k (should be output) and n/k-1 (should not be output).

	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X _{n-n/k+1}		X _n
	3	12	9	27	4	101	 3		3
_					_	_	$\overline{}$		
							n/k-1 o	ccurre	ences

APPROXIMATE FREQUENT ELEMENTS

"little oh"

 $O(k/\varepsilon)$

Issue: No algorithm using o(n) space can output just the items with frequency $\geq n/k$. Hard to tell between an item with frequency n/k (should be output) and n/k-1 (should not be output).

	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆		X _{n-n/k+1}		X _n
	3	12	9	27	4	101	•••	3		3
_										لد
								n/k-1 c	CCUrr	2000

 (ϵ, k) -Frequent Items Problem: Consider a stream of n items x_1, \ldots, x_n . Return a set F of items, including all items that appear at least $\frac{n}{k}$ times and only items that appear at least $(1 - \epsilon) \cdot \frac{n}{k}$ times.

APPROXIMATE FREQUENT ELEMENTS

Issue: No algorithm using o(n) space can output just the items with frequency $\geq n/k$. Hard to tell between an item with frequency n/k (should be output) and n/k-1 (should not be output).

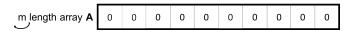
X ₁	X ₂	X ₃	X ₄	X ₅	X ₆		X _{n-n/k+1}		X _n
3	12	9	27	4	101	"	3		3
							n/k-1 c	ccurre	ences

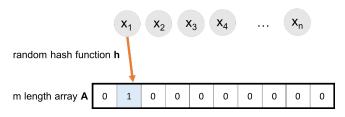
 (ϵ, k) -Frequent Items Problem: Consider a stream of n items x_1, \ldots, x_n . Return a set F of items, including all items that appear at least $\frac{n}{k}$ times and only items that appear at least $(1 - \epsilon) \cdot \frac{n}{k}$ times.

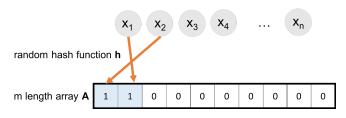
· An example of relaxing to a 'promise problem': for items with frequencies in $[(1 - \epsilon) \cdot \frac{n}{k}, \frac{n}{k}]$ no output guarantee.

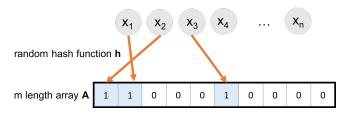
Today: Count-min sketch – a random hashing based method closely related to bloom filters.

random hash function h



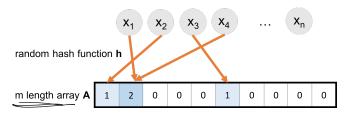






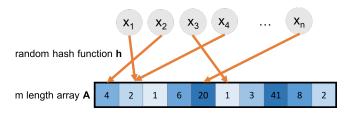
FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Today: Count-min sketch – a random hashing based method closely related to bloom filters.



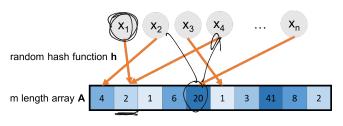
FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Today: Count-min sketch – a random hashing based method closely related to bloom filters.

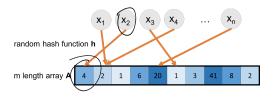


FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Today: Count-min sketch – a random hashing based method closely related to bloom filters.

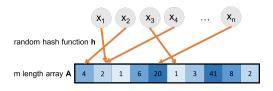


Will use A[h(x)] to estimate f(x), the frequency of x in the stream. I.e., $|\{x_i : x_i = x\}|$.



Use $A[\mathbf{h}(x)]$ to estimate f(x).

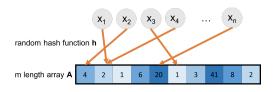
Claim 1: We always have $A[h(x)] \ge f(x)$. Why?



Use $A[\mathbf{h}(x)]$ to estimate f(x).

Claim 1: We always have $A[h(x)] \ge f(x)$. Why?

• A[h(x)] counts the number of occurrences of any y with h(y) = h(x), including x itself.



Use $A[\mathbf{h}(x)]$ to estimate f(x).

Claim 1: We always have $A[h(x)] \ge f(x)$. Why?

- A[h(x)] counts the number of occurrences of any y with h(y) = h(x), including x itself.
- $\cdot A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y).$

$$\underbrace{A[h(x)]}_{\text{error in frequency estimate}} + \underbrace{\sum_{y \neq x: h(y) = h(x)} f(y)}_{\text{error in frequency estimate}}$$

$$A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y)$$

error in frequency estimate

Expected Error:

$$\mathbb{E}\left[\sum_{y\neq x: h(y)=h(x)} f(y)\right] =$$

$$A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y)$$

Expected Error:

ted Error:

error in frequency estimate

$$\mathbb{E}\left[\sum_{\substack{y \neq x: h(y) = h(x)}} f(y)\right] = \sum_{\substack{y \neq x}} \Pr(h(y) = h(x)) \cdot f(y) \qquad \sum_{\substack{y \neq x}} \frac{1}{m} \cdot f(y)$$

$$f(x)$$
: frequency of x in the stream (i.e., number of items equal to x). h : random hash function. m : size of Count-min sketch array.

$$A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y) .$$

error in frequency estimate

Expected Error:

$$\mathbb{E}\left[\sum_{y\neq x: h(y)=h(x)} f(y)\right] = \sum_{y\neq x} \Pr(h(y) = h(x)) \cdot f(y)$$
$$= \sum_{y\neq x} \frac{1}{m} \cdot f(y)$$

$$A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y) .$$

Expected Error:

$$\mathbb{E}\left[\sum_{y \neq x: h(y) = h(x)} f(y)\right] = \sum_{y \neq x} \Pr(h(y) = h(x)) \cdot f(y)$$
$$= \sum_{y \neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \le \frac{n}{m}$$

error in frequency estimate

$$A[\mathbf{h}(x)] = f(x) + \sum_{y \neq x: \mathbf{h}(y) = \mathbf{h}(x)} f(y) .$$

error in frequency estimate

Expected Error:

$$\mathbb{E}\left[\sum_{y \neq x: h(y) = h(x)} f(y)\right] = \sum_{y \neq x} \Pr(h(y) = h(x)) \cdot f(y)$$
$$= \sum_{y \neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \le \frac{n}{m}$$

What is a bound on probability that the error is $\geq \frac{2n}{m}$?

$$\frac{\mathbb{E}(\text{error})}{2n/m} = \frac{1}{2}$$

$$A[h(x)] = f(x) + \sum_{\substack{y \neq x: h(y) = h(x)}} f(y) .$$

error in frequency estimate

Expected Error:

$$\mathbb{E}\left[\sum_{y \neq x: h(y) = h(x)} f(y)\right] = \sum_{y \neq x} \Pr(h(y) = h(x)) \cdot f(y)$$
$$= \sum_{y \neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \le \frac{n}{m}$$

What is a bound on probability that the error is $\geq \frac{2n}{m}$?

Markov's inequality:
$$\Pr\left[\sum_{y\neq x: h(y)=h(x)} f(y) \ge \frac{2n}{m}\right] \le \frac{1}{2}$$
.

$$A[h(x)] = f(x) + \sum_{\substack{y \neq x: h(y) = h(x) \\ \text{error in frequency estimate}}} f(y) .$$

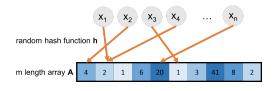
Expected Error:

$$\mathbb{E}\left[\sum_{y \neq x: h(y) = h(x)} f(y)\right] = \sum_{y \neq x} \underbrace{\Pr(h(y) = h(x))}_{\Pr(h(y) = h(x))} \cdot f(y)$$
$$= \sum_{y \neq x} \underbrace{\frac{1}{m} \cdot f(y)}_{\Pr(h(y) = h(x))} \cdot f(y) \le \frac{n}{m}$$

What is a bound on probability that the error is $\geq \frac{2n}{m}$?

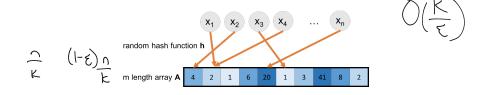
Markov's inequality:
$$\Pr\left[\sum_{y\neq x: h(y)=h(x)} f(y) \ge \frac{2n}{m}\right] \le \frac{1}{2}$$
.

What property of **h** is required to show this bound? a) fully random b) pairwise independent (c) 2-universal) d) locality sensitive



Claim: For any x, with probability at least 1/2,

$$\underbrace{f(x)} \leq A[h(x)] \leq \underbrace{f(x) + \frac{2n}{m}}.$$

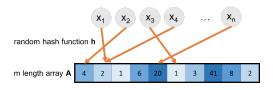


Claim: For any x, with probability at least 1/2,

$$f(x) \le A[\mathbf{h}(x)] \le f(x) + \frac{2n}{m}.$$

$$\frac{2n}{m} = \frac{2n}{ak} = \frac{\epsilon n}{k}$$

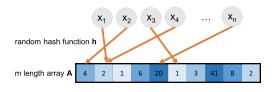
To solve the (ϵ, k) -Frequent elements problem, set $m = \frac{2k}{\epsilon}$.



Claim: For any x, with probability at least 1/2,

$$f(x) \le A[\mathbf{h}(x)] \le f(x) + \frac{2n}{m}.$$

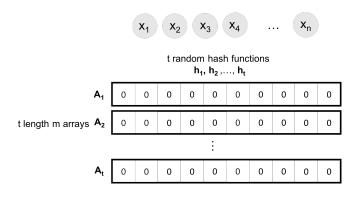
To solve the (ϵ, k) -Frequent elements problem, set $m = \frac{2k}{\epsilon}$. How can we improve the success probability?

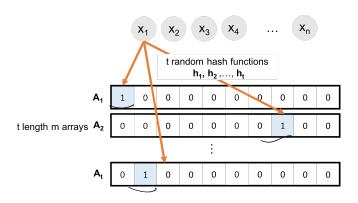


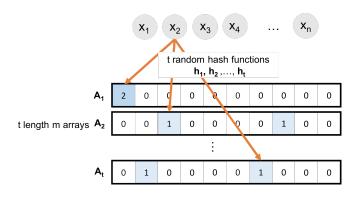
Claim: For any x, with probability at least 1/2,

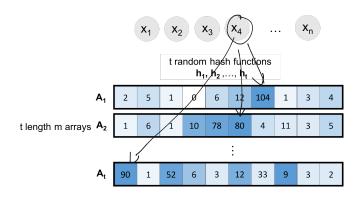
$$f(x) \le A[\mathbf{h}(x)] \le f(x) + \frac{2n}{m}.$$

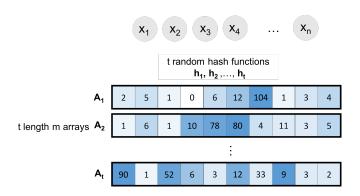
To solve the (ϵ, k) -Frequent elements problem, set $m = \frac{2k}{\epsilon}$. How can we improve the success probability? Repetition.



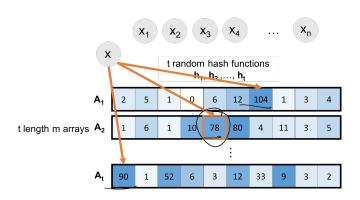




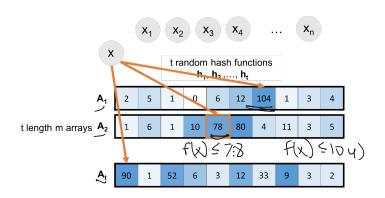




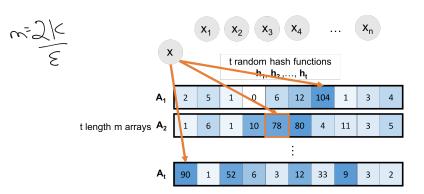
Estimate $\underline{f(x)}$ with $\underline{\tilde{f}(x)} = \min_{i \in [t]} \underline{A_i[\mathbf{h}_i(x)]}$. (count-min sketch)



Estimate
$$f(x)$$
 with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (count-min sketch)

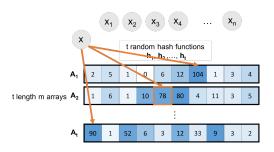


Estimate f(x) with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (count-min sketch) Why min instead of mean or median?

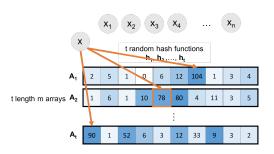


Estimate f(x) with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (count-min sketch)

Why min instead of mean or median? The minimum estimate is always the most accurate since they are all overestimates of the true frequency!

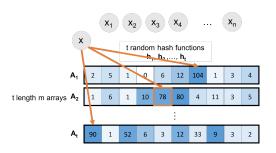


Estimate
$$f(x)$$
 by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$



Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

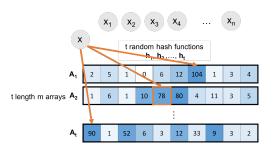
• For every x and $i \in [t]$, we know that for $\underbrace{m = \frac{2k}{\epsilon}}$, with probability $\ge 1/2$: $\underbrace{f(x) \le A_i[h_i(x)] \le f(x) + \frac{\epsilon n}{k}}.$



Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

• For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$: $f(x) \leq A_i[\mathbf{h}_i(x)] \leq f(x) + \frac{\epsilon n}{k}.$

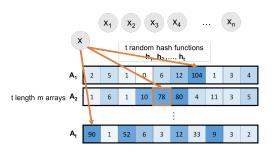
• What is
$$\Pr[f(x) \le \tilde{f}(x) \le f(x) + \frac{\epsilon n}{k}]$$
? $\left| -\frac{1}{2^{\frac{1}{k}}} \right|$



Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

• For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$: $f(x) \leq A_i[\mathbf{h}_i(x)] \leq f(x) + \frac{\epsilon n}{k}.$

• What is $\Pr[f(x) \le \tilde{f}(x) \le f(x) + \frac{\epsilon n}{k}]$? $1 - 1/2^t$.



Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

• For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$: $f(x) \leq A_i[\mathbf{h}_i(x)] \leq f(x) + \frac{\epsilon n}{k}.$

- What is $\Pr[f(x) \le \tilde{f}(x) \le f(x) + \frac{\epsilon n}{k}]$? $1 1/2^t$.
- To get a good estimate with probability $\geq 1 \delta$, set $t = \log(1/\delta)$.

COUNT-MIN SKETCH

Upshot: Count-min sketch lets us estimate the frequency of every item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1 - \delta$ in $O(\log(1/\delta) \cdot k/\epsilon)$ space.

COUNT-MIN SKETCH

Upshot: Count-min sketch lets us estimate the frequency of every item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1 - \delta$ in $O(\log(1/\delta) \cdot k/\epsilon)$ space.

 $O(1 \cdot m)$

· Accurate enough to solve the (ϵ, k) -Frequent elements problem – distinquish between items with frequency $\frac{n}{k}$ and those with frequency $(1 - \epsilon)\frac{n}{k}$.

COUNT-MIN SKETCH

Upshot: Count-min sketch lets us estimate the frequency of every item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1 - \delta$ in $O(\log(1/\delta) \cdot k/\epsilon)$ space.

- · Accurate enough to solve the (ϵ, k) -Frequent elements problem distinquish between items with frequency $\frac{n}{k}$ and those with frequency $(1 \epsilon)\frac{n}{k}$.
- How should we set δ if we want a good estimate for all items at once, with 99% probability? $\mathcal{E}=\underline{.01}$

IDENTIFYING FREQUENT ELEMENTS

Count-min sketch gives an accurate frequency estimate for every item in the stream. But how do we identify the frequent items without having to store/look up the estimated frequency for all elements in the stream?

IDENTIFYING FREQUENT ELEMENTS

Count-min sketch gives an accurate frequency estimate for every item in the stream. But how do we identify the frequent items without having to store/look up the estimated frequency for all elements in the stream?

One approach:

- When a new item comes in at step i, check if its estimated frequency is $\geq i/k$ and store it if so.
- At step i remove any stored items whose estimated frequency drops below i/k.
- Store at most O(k) items at once and have all items with frequency $\geq n/k$ stored at the end of the stream.

Questions on Frequent Elements?