COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.
Lecture 9

LOGISTICS

- Problem Set 2 is due this upcoming Monday. Get an early
start on it.

- Problem Set 1 grades have been released. Mean: 34/41,
Median 36/41.

- If you are unhappy with your grade, ping me and let's chat
about strategies going forward. If you believe there is a
grading error, send a private message to the instructors on
Piazza or ask during office hours.

- The midterm will be any 2 hour slot on 10/8-10/9. We won't
have class on 10/8.

- Study guide/practice questions will be released this week.

SUMMARY

Last Class:

- MinHash as a locality sensitive hash function for Jaccard
similarity

- Near neighbor search with LSH signatures and repeated
hash tables..

- SimHash for cosine similarity.

A locality sensitive hash function can be: (check all that apply)

Select one or more:

a. Randomized

O

J b. Pairwise-Independent

O c. Sensitive to Jaccard Similarity
O

d. Have the distribution of h(x) independent of x.

UPCOMING

Next Few Classes:

- Random compression methods for high dimensional vectors. The
Johnson-Lindenstrauss lemma.

- Connections to the weird geometry of high-dimensional space.
After That: Spectral Methods

- PCA, low-rank approximation, and the singular value
decomposition.

- Spectral clustering and spectral graph theory.

Will use a lot of linear algebra. May be helpful to refresh.

+ Vector dot product, addition, Euclidean norm. Matrix vector
multiplication.

- Linear independence, column span, orthogonal bases, rank.

-+ Orthogonal projection, eigendecomposition, linear systems.

THE FREQUENT ITEMS PROBLEMS

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x4, ..., x, (with possible duplicates). Return any item
at appears at least times.

X, X, X3 X, X5 Xg Xy Xg Xg Xy

5 12 3 3 4 5 5 10 3 5

- What is the maximum number of items that must be
returned?
etumed? 5y o p) B ¢) n/k d) logn

- Trivial with O(n) space - store the count for each item and

return the one that appears > n/k times.
- Can we do it with less space? l.e,, without storing all n items?

THE FREQUENT ITEMS PROBLEM

Applications of Frequent Items:

* Finding top/viral items (i.e,, products on Amazon, videos
watched on Youtube, Google searches, etc.)

- Finding very frequent IP addresses sending requests (to
detect DoS attacks/network anomalies).

- ‘lceberg queries’ for all items in a database with frequency
above some threshold.

Generally want very fast detection, without having to scan
through database/logs. l.e., want to maintain a running list of
frequent items that appear in a stream.

FREQUENT ITEMSET MINING

Association rule learning: A very common task in data mining is to
identify common associations between different events.

Cart 1 Cart 2 Cart 3 Cart 1
- Identified via frequent itemset counting. Find all sets of k items
that appear many times in the same basket.

N

/@
N\

* Frequency of an itemset is known as its support.

A single basket includes many different itemsets, and with many
different baskets an efficient approach is critical. E.g., baskets are
Twitter users and itemsets are subsets of who they follow.

APPROXIMATE FREQUENT ELEMENTS

Issue: No algorithm using o(n) space can output just the items
with frequency > n/k. Hard to tell between an item with
frequency n/k (should be output) and n/k — 1 (should not be

output).
X1 X X3 Xg Xg Xg Xnn/k+1 X,
3 12 9 |27 4 [101]| 7 3 s
I

n/k-1 occurrences

(e, R)-Frequent Items Problem: Consider a stream of n items
X1,...,Xn. Return a set F of items, including all items that
appear at least § times and only items that appear at least
(1—¢)- 7 times.

- An example of relaxing to a ‘promise problem’: for items
with frequencies in [(1—¢) - £, #] no output guarantee. 7

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Today: Count-min sketch — a random hashing based method

closely related to bloom filters.

X1 X2 X3 X4 s Xn

random hash function h

m length array A| 0 0 0 0 0 0 0 0 0 0

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. l.e, [{xj : Xj = x}|.

random hash fur

m length array A

COUNT-MIN SKETCH ACCURACY

Xi X Xz Xg o .. X

random hash function h

m length arrayAl 4 2 1 E. 1 B

Use A[h(x)] to estimate f(x).
Claim 1: We always have A[h(x)] > f(x).

- Alh(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.
< AL = FX) +)iy —ngo).

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

COUNT-MIN SKETCH ACCURACY

ATh(x)] = f(x) + >)
y#x:h(y)=h(x)
Expected Error: error in frequency estimate

E{ 3] S Pr(h(y) = () ()

y#x:h(y)=h(x)

Markov's inequality: Pr {Zy#h —ho f) = 2] < 5.

a) fully random
b) pairwise independent d) locality sensitive

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10

COUNT-MIN SKETCH ACCURACY

Xy Xp X3 Xg e X

random hash function h

m length arrayAl 4 2 1 \Z. 1]

Claim: For any x, with probability at least 1/2,

) < AIGO <) + 2.

To solve the (e, k)-Frequent elements problem, set m = 2¢

How can we improve the success probability?

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

1

COUNT-MIN SKETCH ACCURACY

Xi Xp Xg X4 .. X

t random hash functions

A, 0 0 0 0 0 0 0 0 0 0

tlength marrays A, | 0 | 0 | 0O 0O 0O O | 0 0 0 O tlength m arrays

Aclo o|o|o0o |0 o]0 0|0]|O

Estimate f(x) with f(x) = min;cq Ai[h;(x)]. (count-min sketch)

The minimum estimate
is always the most accurate since they are all overestimates of

the true frequency! "

COUNT-MIN SKETCH ANALYSIS

X; Xp X3 X4 v Xn

t random hash functions
..., h
A,zs‘Ms 12 1‘3‘4'

tlength m arrays Az

Estimate f(x) by f(x) = minicgg Ailhi(x)]
- For every x and i € [t], we know that for m = % with probability
>1/2:

) < Al O] <) + -

- What is Prlf(x) < f(x) < f(x) +]2 1—1/2t.

* To get a good estimate with probability > 1— 4, set t = log(1/4). -

COUNT-MIN SKETCH

Upshot: Count-min sketch lets us estimate the frequency of
every item in a stream up to error S with probability > 11— in
O (log(1/8) - k/€) space.

- Accurate enough to solve the (e, R)-Frequent elements
problem - distinquish between items with frequency ¢ and
those with frequency (1 —€)7.

- How should we set § if we want a good estimate for all items
at once, with 99% probability?

14

IDENTIFYING FREQUENT ELEMENTS

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequency
for all elements in the stream?

One approach:

- When a new item comes in at step I, check if its estimated
frequency is > i/k and store it if so.

- At step i remove any stored items whose estimated
frequency drops below i/k.

- Store at most O(k) items at once and have all items with
frequency > n/k stored at the end of the stream.

15

Questions on Frequent Elements?

16

