
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Fall 2020.
Lecture 9

0

logistics

• Problem Set 2 is due this upcoming Monday. Get an early
start on it.

• Problem Set 1 grades have been released. Mean: 34/41,
Median 36/41.

• If you are unhappy with your grade, ping me and let’s chat
about strategies going forward. If you believe there is a
grading error, send a private message to the instructors on
Piazza or ask during office hours.

• The midterm will be any 2 hour slot on 10/8-10/9. We won’t
have class on 10/8.

• Study guide/practice questions will be released this week.

1

summary

Last Class:

• MinHash as a locality sensitive hash function for Jaccard
similarity

• Near neighbor search with LSH signatures and repeated
hash tables..

• SimHash for cosine similarity.

This Class: Frequent Items Estimation

• Count-min sketch (random hashing for frequent element
estimation).

2

upcoming

Next Few Classes:
• Random compression methods for high dimensional vectors. The
Johnson-Lindenstrauss lemma.

• Connections to the weird geometry of high-dimensional space.

After That: Spectral Methods
• PCA, low-rank approximation, and the singular value
decomposition.

• Spectral clustering and spectral graph theory.

Will use a lot of linear algebra. May be helpful to refresh.

• Vector dot product, addition, Euclidean norm. Matrix vector
multiplication.

• Linear independence, column span, orthogonal bases, rank.
• Orthogonal projection, eigendecomposition, linear systems. 3

the frequent items problems

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x1, . . . , xn (with possible duplicates). Return any item
at appears at least nk times.

• What is the maximum number of items that must be
returned? a) n b) k c) n/k d) logn

• Trivial with O(n) space – store the count for each item and
return the one that appears ≥ n/k times.

• Can we do it with less space? I.e., without storing all n items?
4

the frequent items problem

Applications of Frequent Items:

• Finding top/viral items (i.e., products on Amazon, videos
watched on Youtube, Google searches, etc.)

• Finding very frequent IP addresses sending requests (to
detect DoS attacks/network anomalies).

• ‘Iceberg queries’ for all items in a database with frequency
above some threshold.

Generally want very fast detection, without having to scan
through database/logs. I.e., want to maintain a running list of
frequent items that appear in a stream.

5

frequent itemset mining

Association rule learning: A very common task in data mining is to
identify common associations between different events.

• Identified via frequent itemset counting. Find all sets of k items
that appear many times in the same basket.

• Frequency of an itemset is known as its support.
• A single basket includes many different itemsets, and with many
different baskets an efficient approach is critical. E.g., baskets are
Twitter users and itemsets are subsets of who they follow. 6

approximate frequent elements

Issue: No algorithm using o(n) space can output just the items
with frequency ≥ n/k. Hard to tell between an item with
frequency n/k (should be output) and n/k− 1 (should not be
output).

(ϵ, k)-Frequent Items Problem: Consider a stream of n items
x1, . . . , xn. Return a set F of items, including all items that
appear at least nk times and only items that appear at least
(1− ϵ) · nk times.

• An example of relaxing to a ‘promise problem’: for items
with frequencies in [(1− ϵ) · nk ,

n
k] no output guarantee. 7

frequent elements with count-min sketch

Today: Count-min sketch – a random hashing based method
closely related to bloom filters.

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|.

8

count-min sketch accuracy

Use A[h(x)] to estimate f(x).

Claim 1: We always have A[h(x)] ≥ f(x). Why?

• A[h(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

• A[h(x)] = f(x) +
∑

y̸=x:h(y)=h(x) f(y).

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

9

count-min sketch accuracy

A[h(x)] = f(x) +
∑

y ̸=x:h(y)=h(x)
f(y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y ̸=x:h(y)=h(x)

f(y)

 =
∑
y ̸=x

Pr(h(y) = h(x)) · f(y)

=
∑
y ̸=x

1
m · f(y) = 1

m · (n− f(x)) ≤ n
m

What is a bound on probability that the error is ≥ 2n
m ?

Markov’s inequality: Pr
[∑

y ̸=x:h(y)=h(x) f(y) ≥ 2n
m

]
≤ 1

2 .

What property of h is required to show this bound? a) fully random
b) pairwise independent c) 2-universal d) locality sensitive

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10

count-min sketch accuracy

Claim: For any x, with probability at least 1/2,

f(x) ≤ A[h(x)] ≤ f(x) + 2n
m .

To solve the (ϵ, k)-Frequent elements problem, set m = 2k
ϵ .

How can we improve the success probability? Repetition.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

11

count-min sketch accuracy

Estimate f(x) with f̃(x) = mini∈[t] Ai[hi(x)]. (count-min sketch)

Why min instead of mean or median? The minimum estimate
is always the most accurate since they are all overestimates of
the true frequency! 12

count-min sketch analysis

Estimate f(x) by f̃(x) = mini∈[t] Ai[hi(x)]
• For every x and i ∈ [t], we know that for m = 2k

ϵ , with probability
≥ 1/2:

f(x) ≤ Ai[hi(x)] ≤ f(x) + ϵn
k .

• What is Pr[f(x) ≤ f̃(x) ≤ f(x) + ϵn
k]? 1− 1/2t.

• To get a good estimate with probability ≥ 1− δ, set t = log(1/δ).
13

count-min sketch

Upshot: Count-min sketch lets us estimate the frequency of
every item in a stream up to error ϵn

k with probability ≥ 1− δ in
O (log(1/δ) · k/ϵ) space.

• Accurate enough to solve the (ϵ, k)-Frequent elements
problem – distinquish between items with frequency n

k and
those with frequency (1− ϵ)nk .

• How should we set δ if we want a good estimate for all items
at once, with 99% probability?

14

identifying frequent elements

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequency
for all elements in the stream?

One approach:

• When a new item comes in at step i, check if its estimated
frequency is ≥ i/k and store it if so.

• At step i remove any stored items whose estimated
frequency drops below i/k.

• Store at most O(k) items at once and have all items with
frequency ≥ n/k stored at the end of the stream.

15

Questions on Frequent Elements?

16

