COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.
Lecture 9

LOGISTICS

- Problem Set 2 is due this upcoming Monday. Get an early
start on it.

- Problem Set 1 grades have been released. Mean: 34/41,
Median 36/41.

- If you are unhappy with your grade, ping me and let's chat
about strategies going forward. If you believe there is a
grading error, send a private message to the instructors on
Piazza or ask during office hours.

- The midterm will be any 2 hour slot on 10/8-10/9. We won't
have class on 10/8.

- Study guide/practice questions will be released this week.

SUMMARY

Last Class:

- MinHash as a locality sensitive hash function for Jaccard
similarity

- Near neighbor search with LSH signatures and repeated
hash tables..

- SimHash for cosine similarity.

WA /} mHB) mP(E)) - S(ﬂ@
Last Class: 6\ \5_\1 ?f

(UhH A))* 5(mA@) = T(4R)
- MinHash as a locality sensitive hash fun ion for Jaccard

similarity
- Near neighbor search with LSH signatures and repeated
hash tables.. h s a e
- SimHash for cosine similarity. N Ak
Pr (W <Wy)) T
A locality sensitive hash function can be: (check all that apply) hLy\’}
NEY

felect one'/iﬁe: \
. "i.
a. Randomized n
WX W:p
§< b. Pairwise-Independent o BN E SRR ?f ()

\ K, \3
c. Sensitive to Jaccard Similarity 'Fr/ ”\\

f h(x}-independent of

@ ’ . Lo W) Isinl—\-\ﬂn(")

R :éc_|}"\,1.__®,,\§

. : y e
. VN h \ o \r_&
__Last Class: m\«\kA) N (o) - 3\%

- MinHash as a locality sensitive hash function for Jaccard
similarity

- Near neighbor search with LSH signatures and repeated
hash tables..

- SimHash for cosine similarity.
This Class: Frequent Items Estimation

- Count-min sketch (random hashing for frequent element
estimation).

UPCOMING

Next Few Classes:

* Random compression methods for high dimensional vectors. The
Johnson-Lindenstrauss lemma.

- Connections to the weird geometry of high-dimensional space.

UPCOMING

Next Few Classes:

* Random compression methods for high dimensional vectors. The
Johnson-Lindenstrauss lemma.

- Connections to the weird geometry of high-dimensional space.

After That: Spectral Methods

- PCA, low-rank approximation, and the singular value
decomposition.

- Spectral clustering and spectral graph theory.

UPCOMING

Next Few Classes:

* Random compression methods for high dimensional vectors. The
Johnson-Lindenstrauss lemma.

- Connections to the weird geometry of high-dimensional space.

After That: Spectral Methods

- PCA, low-rank approximation, and the singular value
decomposition.

- Spectral clustering and spectral graph theory.

Will use a lot of linear algebra. May be helpful to refresh.

- Vector dot product, addition, Euclidean norm. Matrix vector
multiplication.

Cinear independence, column span, orthogonal bases, rank.

- _Orthogonal projection, eigendecomposition, linear systems. 3

THE FREQUENT ITEMS PROBLEMS

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x1, ..., x, (with possible duplicates). Return any item
at appears at least § times.

THE FREQUENT ITEMS PROBLEMS

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream

of nitems x1, ..., x, (with possible duplicates). Return any item
at appears at least § times. \R_ 2
X1 Xz X3 Xy X5 Xg X; Xg Xy

5 12 3 3 4 5 5 10 3

THE FREQUENT ITEMS PROBLEMS

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x1, ..., x, (with possible duplicates). Return any item
at appears at least § times.

Xy X, X3 X, X5 Xg Xy Xg Xq

5 12 3 3 4 5 5 10 3

THE FREQUENT ITEMS PROBLEMS

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x1, ..., x, (with possible duplicates). Return any item
at appears at least § times.

X, X, X3 X, X5 Xg Xy Xg Xs
5 12 3 3 4 5 5 10 3
coN '8
- What is the maximu mber of items that st be ﬁ\(\\ks s
?
returned: u< é c) n/k d) logn

~ AR 9V

o doked 1%7/&’“@) %.I&HHs S0

THE FREQUENT ITEMS PROBLEMS

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x1, ..., x, (with possible duplicates). Return any item
at appears at least § times.

Xy X, X3 X, X5 Xg Xy Xg Xq

5 12 3 3 4 10 3

8]
v

- What is the maximum number of items that must be

returned? a) n b) kR c) n/k d) logn

THE FREQUENT ITEMS PROBLEMS

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x1, ..., x, (with possible duplicates). Return any item
at appears at least § times.

Xy X, X3 X, X5 Xg Xy Xg Xq
5 12 3 3 4 10 3

8]
v

- What is the maximum number of items that must be
retur ?
returneds a) n b))k c) n/k d) logn
- Trivial with O(n) space - store the count for each item and

return the one that appears > n/k times.
- Can we do it with less space? l.e, without storing all n items?

THE FREQUENT ITEMS PROBLEM

Applications of Frequent Items:

THE FREQUENT ITEMS PROBLEM

Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos
watched on Youtube, Google searches, etc.)

THE FREQUENT ITEMS PROBLEM

Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos
watched on Youtube, Google searches, etc.)

- Finding very frequent IP addresses sending requests (to
detect DoS attacks/network anomalies).

THE FREQUENT ITEMS PROBLEM

Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos
watched on Youtube, Google searches, etc.)

- Finding very frequent IP addresses sending requests (to
detect DoS attacks/network anomalies).

- ‘lceberg queries’ for all items in a database with frequency
above some threshold.

THE FREQUENT ITEMS PROBLEM

Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos
watched on Youtube, Google searches, etc.)

- Finding very frequent IP addresses sending requests (to
detect DoS attacks/network anomalies).

- ‘lceberg queries’ for all items in a database with frequency
above some threshold.

Generally want very fast detection, without having to scan
through database/logs. l.e., want to maintain a running list of
frequent items that appear in a stream.

FREQUENT ITEMSET MINING

Association rule learning: A very common task in data mining is to
identify common associations between different events.

FREQUENT ITEMSET MINING

Association rule learning: A very common task in data mining is to
identify common associations between different events.

Cart 1 Cart 2 Cart 3

FREQUENT ITEMSET MINING

Association rule learning: A very common task in data mining is to
identify common associations between different events.

Cart 1 Cart 2 Cart 3

FREQUENT ITEMSET MINING

Association rule learning: A very common task in data mining is to
identify common associations between different events.

Cart 1 Cart 2 Cart 3

- Identified via frequent itemset counting. Find all sets of k items
that appear many times in the same basket.

FREQUENT ITEMSET MINING

Association rule learning: A very common task in data mining is to
identify common associations between different events.

Cart 1 Cart 2 Cart 3

- Identified via frequent itemset counting. Find all sets of k items
that appear many times in the same basket.

- Frequency of an itemset is known as its support.

FREQUENT ITEMSET MINING

Association rule learning: A very common task in data mining is to
identify common associations between different events.

Cart 3

- Identified via frequent itemset counting. Find all sets of k items
that appear many times in the same basket.
- Frequency of an itemset is known as its support.

- A single basket includes many different itemsets, and with many
different baskets an efficient approach is critical. E.g.,, baskets are
Twitter users and itemsets are subsets of who they follow. 6

APPROXIMATE FREQUENT ELEMENTS

Issue: No algorithm using o(n) space can output just the items
with frequency > n/k. Hard to tell between an item with
frequency n/k (should be output) and n/k — 1 (should not be

output).

APPROXIMATE FREQUENT ELEMENTS

Q l\/\\
Issue: No algorithm using o(n) space can output just the items
with frequency > n/k. Hard to tell between an item with
frequency n/k (should be output) and n/k — 1 (should not be

output).
Xy X X3 Xq X5 Xg Xn-n/k+1 Xn
3 |12 9 |27] 4 |100] 7 3 s
—_
—

n/k-1 occurrences
_ =

APPROXIMATE FREQUENT ELEMENTS

Issue: No algorithm using o(n) space can output just the items
with frequency > n/k. Hard to tell between an item with
frequency n/k (should be output) and n/k — 1 (should not be

output).
Xy X X3 Xq X5 Xg Xn-n/k+1 Xn
3 |12 9 |27] 4 |100] 7 3 s
—

n/k-1 occurrences

7 (¢, R)-Frequent Items Problem: Consider a stream of n items
X1,...,Xn. Return a set F of items, including all items that
appear at least 7 times and only items that appear at least

(1—¢€)- 3 times.
—_— €2 | <= (00

APPROXIMATE FREQUENT ELEMENTS

Issue: No algorithm using o(n) space can output just the items
with frequency > n/k. Hard to tell between an item with
frequency n/k (should be output) and n/k — 1 (should not be

output).
Xy X X3 Xq X5 Xg Xn-n/k+1 Xn
3 |12 9 |27] 4 |100] 7 3 s
—

n/k-1 occurrences

(e, R)-Frequent Items Problem: Consider a stream of n items
X1,...,Xn. Return a set F of items, including all items that
appear at least 7 times and only items that appear at least
(1—¢€)- 3 times.

- An example of relaxing to a ‘promise problem’: for items
with frequencies in [(1—¢) - §, §] no output guarantee. 7

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Today: Count-min sketch — a random hashing based method
closely related to bloom filters.

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Today: Count-min sketch — a random hashing based method
closely related to bloom filters.

X4 Xy X3 Xy v Xn

random hash function h

m length array A| 0 0 0 0 0 0 0 0| o0 0

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Today: Count-min sketch — a random hashing based method
closely related to bloom filters.

X4 Xy X3 Xy v Xn

random hash function h \

mlengtharayAl o | 12 | © o| o]0 o 0o 0] o0

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Today: Count-min sketch — a random hashing based method
closely related to bloom filters.

X4 Xy X3 Xy v Xn

random hash function h

mlengtharrayA| 1 1 [f) o | 0o 0o o o 0| o0

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Today: Count-min sketch — a random hashing based method
closely related to bloom filters.

X4 Xy X3 Xy v Xn

random hash function h

m length array A| 1 1 0 0 0 1 0 0| o0 0

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Today: Count-min sketch — a random hashing based method

closely related to bloom filters. ,

X1 X2 X3 X4 e Xn

random hash function h

m length array A| 1 2 0 0 0 1 0 0| o0 0

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Today: Count-min sketch — a random hashing based method
closely related to bloom filters.

random hash function h

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Today: Count-min sketch — a random hashing based method
closely related to bloom filters.

random hash function h

Al * -
Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. l.e, |[{xj : x; = x}|.

COUNT-MIN SKETCH ACCURACY

/1$ /,b

Xy Xp Xz Xq e Xn

random hash function h \

.

mIengtharrayAl 4 2 1 | 6 . 1 2]

Use A[h(x)] to estimate f(x).
Claim 1: We always have A[h(x)] > f(x). Why?

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

COUNT-MIN SKETCH ACCURACY

Xy Xp Xz Xq e Xn

random hash function h

mIengtharrayAl 4 2 1 | 6 . 1 2]

Use A[h(x)] to estimate f(x).
Claim 1: We always have A[h(x)] > f(x).

- Alh(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

COUNT-MIN SKETCH ACCURACY

Xy Xp Xz Xq e Xn

random hash function h

mIengtharrayAl 4 2 1 | 6 . 1 2]

Use A[h(x)] to estimate f(x).
Claim 1: We always have A[h(x)] > f(x).

- Alh(x)] counts the number of occurrences of any y with
h(y) = h(x), mcludmgmtself/,,\m!ﬁm el
- Alh(x)] = f(x)+Zy;ﬁx h(y)=h) fV)-

w-._e
f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

COUNT-MIN SKETCH ACCURACY

ATh()] = f(x) + > fw)

— yAeh()=hK)

error in frequency estimate

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10

COUNT-MIN SKETCH ACCURACY

ATh()] = f(x) + > fw)

y#x:h(y)=h(x)
Expected Error: error in frequency estimate

El Y fwl=

yx:h(y)=h(x)

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

10

COUNT-MIN SKETCH ACCURACY

ATh()] = f(x) + > fw)

y#x:h(y)=h(x)
Expected Error: error in frequency estimate

El > fW| = Pr(hly)=h)-fy)

yAch()=ht) — | oy T

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10

COUNT-MIN SKETCH ACCURACY

ARG =f0+ S) . o budas
y#xh(y)=h(x) WPl
—_——

Expected Error: error in frequency estimate

E[> f(y)] = >_Pr(h(y) = h(9)) - f(v)
%

#ch(y)=h(x) yx

=Z%-f(y)

YA —

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

10

COUNT-MIN SKETCH ACCURACY

ATh()] = f(x) + > fw)

y#x:h(y)=h(x)
Expected Error: error in frequency estimate

E[> f(y)] = > Pr(h(y) = h(x)) - f(y)
y

#xch(y)=h(x) v
=Y)= (-) <
Y#X
- 5 €
m ij ‘\ﬁ>

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10

COUNT-MIN SKETCH ACCURACY

ATh()] = f(x) + > fw)

33 e¢dIo

y#x:h(y)=h(x) X=3
| ——
Expected Error: error in frequency estimate
5 F(& Nl
El Y. | =>_Pr(h()=h()-fy) 79 7 <
y#x:h(y)=h(x) I —
1 n
=Y =) <
Y#X
f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10

COUNT-MIN SKETCH ACCURACY

ATh()] = f(x) + > fw)

y#x:h(y)=h(x)
Expected Error: error in frequency estimate

E[> f(y)] = > Pr(h(y) = h(x)) - f(y)
y

#ch(y)=h(x) yx

=W = (1) <

y#x

Markov's inequality: Pr {Zy#h(y)zh(x)f(y) > %”} <
—yZxhly)=ht) “L

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10

COUNT-MIN SKETCH ACCURACY

ATh()] = f(x) + > fw
y#x:h(y)=h(x)
—_——
Expected Error: error in frequency estimate

E[> f(y)] = > Pr(h(y) = h(x)) - f(v)
y

#xh(y)=h(x) yx =

=3)= (-) <

y#x

Markov's inequality: Pr {Zy#h(y)zh(x)f(y) > m} <
a) fully random

b) pairwise independentmq d) locality sensitive

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10

COUNT-MIN SKETCH ACCURACY

ATh()] = f(x) + > fw)

y#x(y)=h(x)

Expected Error: error in frequency estimate
E [> f(y)] =Y Pr(h(y) = h(x) - f(y)
yZx:h(y)=h(x) y#X

=W = (1) <

y#x

Markov's inequality: Pr {Zy#h(y)zh(x)f(y) > %”} <

N

a) fully random
b) pairwise independent d) locality sensitive

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10

COUNT-MIN SKETCH ACCURACY

X; Xy Xz Xg e Xn

random hash function h \
< —
m length arrayAl 4 &z)1 | 6 . 1 2]

Claim: For any x, with probability at least 1/2,

F(x) < AI(O] < F) + 2.

m

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

COUNT-MIN SKETCH ACCURACY

X1 X X3 X

random hash function h

Xn
mIengtharrayAl 4 2 1 | 6 . 1 2] -

n
Claim: For any x, with probability at least 1/2, ke Jl: z —.t

2n
et
To solve the (e, R)-Frequent elements problem, set m {_%\

f(x) < AIh()] < f(x) +

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

COUNT-MIN SKETCH ACCURACY

X; Xy Xz Xg e Xn

random hash function h
mIengtharrayAl 4 2 1 | 6 . 1 2]

Claim: For any x, with probability at least 1/2,
=

f(x) < AI(O] < F) + 2.

m

To solve the (e, R)-Frequent elements problem, set m = Z—f

How can we improve the success probability?

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

COUNT-MIN SKETCH ACCURACY

X; Xy Xz Xg e Xn

random hash function h
mIengtharrayAl 4 2 1 | 6 . 1 2]

Claim: For any x, with probability at least 1/2,

f(x) < AI(O] < F) + 2.

m

To solve the (e, R)-Frequent elements problem, set m = Z—f

How can we improve the success probability?

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

COUNT-MIN SKETCH ACCURACY

Xy Xp X3 Xg e Xq

t random hash functions
hy, hy,..., by

A, 0 0 0 0 0 0 0 0 0 0

tlength marrays A, | 0 | 0 | 0 | O

COUNT-MIN SKETCH ACCURACY

Xy Xp X3 Xg e Xq

¥random hash functions
hy, hy,... hy

A1100000‘0‘000

tlength marrays A, | 0 | 0 |0 O

COUNT-MIN SKETCH ACCURACY

Xy Xp X3 Xg e Xq

) t}ar;dom hash functions
hy, hy ... hy

Arl2|o0o/djo % o o o o0 o0

tlengthmarrays A, | 0 | 0 | 1 O

COUNT-MIN SKETCH ACCURACY

X4 Xo X3 Xy Xn

t random hash functions
hy, hy,..., by

A, 2 5 1 0 6 12: 1 8 4

tlengthmarrays A2 | 1 | 6 | 1 | 10 78.4 11| 3 | 5

At:l 52 | 6 | 3 | 12 33:3 2

COUNT-MIN SKETCH ACCURACY

Xy Xp X3 Xg e Xq

t random hash functions

A, 2 5 1 0 6 12: 1 8 4

tlengthmarrays A2 | 1 | 6 | 1 | 10 78.4 11| 3 | 5

At:l 52 | 6 | 3 | 12 33:3 2

Estimate f(x) with f(x) = min;cg Aihi(x)]. (count-min sketch)

—_—

—_—

COUNT-MIN SKETCH ACCURACY

X X X3 X4 Xn
A, \ 113 | 4
L |
tlength m arrays Az \1 6 | 1 |10 4 11| 3 5

6 3 |12 33.3 2

Estimate f(x) with f(x) = min;cg Aihi(x)]. (count-min sketch)

COUNT-MIN SKETCH ACCURACY

Xn

X4 Xo X3 Xy

A

L |
tlength m arrays Az \1 6 | 1 1oi 4 11| 3 5
6 | 3 |12 33.3 2

Estimate f(x) with f(x) = min;cg Aihi(x)]. (count-min sketch)

Why min instead of mean or median?

COUNT-MIN SKETCH ACCURACY

Xy Xp X3 Xg e Xq

A

L |
tlength m arrays Az \1 6 | 1 10)_- 4 11| 3 5
6 | 3 |12 33.3 2

Estimate f(x) with f(x) = min;cg Aihi(x)]. (count-min sketch)
Why min instead of mean or median? The minimum estimate
is always the most accurate since they are all overestimates of
the true frequency!
12

COUNT-MIN SKETCH ANALYSIS

Xy Xy X3 X4 R

t random hash functions
\ P

e [-
S0 oo o oo

—

x

Estimate f(x) by f(x) = minjcy Ailhi(x)]

COUNT-MIN SKETCH ANALYSIS

Xy Xy X3 X4 R

Estimate f(x) by f(x) = minjcy Ailhi(x)]

* For every x and i € [t], we know that for m = % with probability
>1/2
fx) < Ailhi(x)] < f(x) +

[=3

COUNT-MIN SKETCH ANALYSIS

Xn

t random hash functions
X w\. 41

tlength m arrays Az

Estimate f(x) by f(x) = minjcy Ailhi(x)]
* For every x and i € [t], we know that for m = %, with probability

21/2 en

) < AR <) + -

* What is Pr[f(x) < f(x) < f(x) + <1]?

COUNT-MIN SKETCH ANALYSIS

Xy Xy X3 X4 R

Estimate f(x) by f(x) = minjcy Ailhi(x)]
* For every x and i € [t], we know that for m = % with probability

21/2 en

) = Ailhi()] < f0) + -
_—

* What is Pr[f(x) < f(x) < L7 1=1/28
at'is IULX)\:Mh\] i(/) :/D
Pf(v%fmx),ﬂwmb at 1

COUNT-MIN SKETCH ANALYSIS

Xy Xy X3 X4 R

Estimate f(x) by f(x) = minjcy Ailhi(x)]
* For every x and i € [t], we know that for m = % with probability

21/2 en

O = AilhiG)] < 0 + -

- What is Pr[f(x) < f(x) < f(x) + <2]? 1—1/2
- To get a good estimate with probability > 1 — 6, set t = log(1/6).

COUNT-MIN SKETCH

Upshot: Count-min sketch lets us estimate the frequency of
every item in a stream up to error ! with probability > 1—4din
O (log(1/0) - R/€) space.

14

COUNT-MIN SKETCH

Upshot: Count-min sketch lets us estimate the frequency of
every item in a stream up to error ! with probability > 1—4din
O (log(1/6) - k/€) space. -

- Accurate enough to solve the (e, R)-Frequent elements
problem - distinquish between items with frequency £ and
those with frequency (1—¢€)2. En

14

2t L3 ,0)
o@P\ Charn ool 6 201

RN AT
€T « Ml) &0 P S Jm wo 0S
Co~ N\ U oY onwa \Dbﬁl)g “ (VQ\B PW) 32
Upshot: Count-min sketch lets us estimate the frequency of

every item in a stream up to error ! with probability > 1—4din
O (log(1/0) - R/€) space. Q(\abtnﬁ s <
¢

- Accurate enough to solve the (e, R)-Frequent elements
problem - distinquish between items with frequency £ and
those with frequency (1—¢€)2.

- How should we set § if we want a good estimate for all items

at oncg,)thhégég@@m Mg Y oy odnde
A\ Fegquacd
P (E)S & PrlE vEr ueo ;) s $(E) $ng

14

IDENTIFYING FREQUENT ELEMENTS

\0 \8) "_K_ jal _\P
g(A < S‘OQ%_ (o7
Count-min sketch gives an accurate frequency estimate for

every item in the stream. But how do we identify the frequent

items without having to store/look up the estimated frequency
)

1S

for all elements in the stream? me
(7 & © 1
+,m < \-DU/CDWT\

I
C 3 e

- P-;\\\V\n, b (E,,\(.) o Pmu\,\:\sj\;a/‘g >
6 r Q-UV l’\?Ju-vS r"’-‘L -

len(x

IDENTIFYING FREQUENT ELEMENTS

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequency
for all elements in the stream?

One approach: Xy YRR €

(I

Xn

- When a new item comes in at step i, check if its estimated
frequency is > i/k and store it if so.

- At step i remove any stored items whose estimated
frequency drops below i/k.

- Store at most O(R) items at once and have all items with
frequency > n/k stored at the end of the stream.
=

Tou gty G e b b g

PSR PN SN S PUPS &5, &

O e % aute gy o Ched
t\d-/'/'g \/\b\zb F}LC‘/ < _‘_

s
Questions on Frequent Elements? =
: Ot <

+ + [] 5\‘2‘«.‘\”&'\

h DQ/O[\‘N), /QLW@/% IJMNNS Padion,
“Podered N ke (g0 g, e

- ~a ot oS
0% GuY i Skctds (\%T;\h K

fo <olve ALy W\M\ I/\ 0('%%‘%)5@00
<< Dn)

16

