COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2020. Lecture 9

LOGISTICS

- Problem Set 2 is due this upcoming Monday. Get an early start on it.
- Problem Set 1 grades have been released. Mean: 34/41, Median 36/41.
- If you are unhappy with your grade, ping me and let's chat about strategies going forward. If you believe there is a grading error, send a private message to the instructors on Piazza or ask during office hours.
- The midterm will be any 2 hour slot on 10/8-10/9. We won't have class on 10/8.
- · Study guide/practice questions will be released this week.

SUMMARY

Last Class:

- MinHash as a locality sensitive hash function for Jaccard similarity
- Near neighbor search with LSH signatures and repeated hash tables..
- · SimHash for cosine similarity.

Last Class:

- Last Class: g(mH(A)) = J(AB)• MinHash as a locality sensitive hash function for Jaccard similarity
- Near neighbor search with LSH signatures and repeated hash tables..
- · SimHash for cosine similarity.

Select one or more:

b. Pairwise-Independent

a. Randomized

SUMMARY

Last Class: $mH(A) = \min_{n \in \mathbb{N}} h(ai)$ ai will be

- MinHash as a locality sensitive hash function for Jaccard similarity
- Near neighbor search with LSH signatures and repeated hash tables..
- SimHash for cosine similarity.

This Class: Frequent Items Estimation

• Count-min sketch (random hashing for frequent element estimation).

UPCOMING

Next Few Classes:

- Random compression methods for high dimensional vectors. The Johnson-Lindenstrauss lemma.
- · Connections to the weird geometry of high-dimensional space.

UPCOMING

Next Few Classes:

- Random compression methods for high dimensional vectors. The Johnson-Lindenstrauss lemma.
- · Connections to the weird geometry of high-dimensional space.

After That: Spectral Methods

- PCA, low-rank approximation, and the singular value decomposition.
- Spectral clustering and spectral graph theory.

UPCOMING

Next Few Classes:

- Random compression methods for high dimensional vectors. The Johnson-Lindenstrauss lemma.
- · Connections to the weird geometry of high-dimensional space.

After That: Spectral Methods

- PCA, low-rank approximation, and the singular value decomposition.
- · Spectral clustering and spectral graph theory.

Will use a lot of linear algebra. May be helpful to refresh.

- Vector dot product, addition, Euclidean norm. Matrix vector multiplication.
- Linear independence, column span, orthogonal bases, rank.
- Orthogonal projection, eigendecomposition, linear systems.

$\mathbf{x_1}$	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	X ₈	X ₉
5	12	3	3	4	5	5	10	3

X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	x ₈	X ₉
5	12	3	3	4	5	5	10	3

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	x ₈	X ₉
5	12	3	3	4	5	5	10	3

· What is the maximum number of items that work be returned? (a) n (b) h c) n/k d) log n

each heavy with appears of these so total frequency is of HHS > n

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	x ₈	X ₉
5	12	3	3	4	5	5	10	3

• What is the maximum number of items that must be returned? a) n b) k c) n/k d) $\log n$

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	x ₈	X ₉
5	12	3	3	4	5	5	10	3

- What is the maximum number of items that must be returned? a) n b) k c) n/k d) $\log n$
- Trivial with O(n) space store the count for each item and return the one that appears $\geq n/k$ times.
- · Can we do it with less space? I.e., without storing all *n* items?

Applications of Frequent Items:

Applications of Frequent Items:

• Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)

Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).

Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).
- · 'Iceberg queries' for all items in a database with frequency above some threshold.

Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).
- · 'Iceberg queries' for all items in a database with frequency above some threshold.

Generally want very fast detection, without having to scan through database/logs. I.e., want to maintain a running list of frequent items that appear in a stream.

Association rule learning: A very common task in data mining is to identify common associations between different events.

• Identified via frequent itemset counting. Find all sets of *k* items that appear many times in the same basket.

- Identified via frequent itemset counting. Find all sets of *k* items that appear many times in the same basket.
- Frequency of an itemset is known as its support.

- Identified via frequent itemset counting. Find all sets of *k* items that appear many times in the same basket.
- Frequency of an itemset is known as its support.
- A single basket includes many different itemsets, and with many different baskets an efficient approach is critical. E.g., baskets are Twitter users and itemsets are subsets of who they follow.

Issue: No algorithm using o(n) space can output just the items with frequency $\geq n/k$. Hard to tell between an item with frequency n/k (should be output) and n/k-1 (should not be output).

Issue: No algorithm using o(n) space can output just the items with frequency $\geq n/k$. Hard to tell between an item with frequency n/k (should be output) and n/k-1 (should not be output).

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X _{n-n/k+1}		X _n
3	12	9	27	4	101	 3		3
						n/k-1 c	ccurre	ences

Issue: No algorithm using o(n) space can output just the items with frequency $\geq n/k$. Hard to tell between an item with frequency n/k (should be output) and n/k-1 (should not be output).

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X _{n-n/k+1}		x _n
3	12	9	27	4	101	 3	•••	3
						n/k-1 c	ccurre	ences

 (ϵ, k) -Frequent Items Problem: Consider a stream of n items x_1, \ldots, x_n . Return a set F of items, including all items that appear at least $\frac{n}{k}$ times and only items that appear at least $(1 - \epsilon) \cdot \frac{n}{k}$ times.

Issue: No algorithm using o(n) space can output just the items with frequency $\geq n/k$. Hard to tell between an item with frequency n/k (should be output) and n/k-1 (should not be output).

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆		X _{n-n/k+1}		X _n	
3	12	9	27	4	101		3	""	3	
							n/k-1 c	ccurre	ences	

 (ϵ, k) -Frequent Items Problem: Consider a stream of n items x_1, \ldots, x_n . Return a set F of items, including all items that appear at least $\frac{n}{k}$ times and only items that appear at least $(1 - \epsilon) \cdot \frac{n}{k}$ times.

· An example of relaxing to a 'promise problem': for items with frequencies in $[(1 - \epsilon) \cdot \frac{n}{b}, \frac{n}{b}]$ no output guarantee.

Today: Count-min sketch – a random hashing based method closely related to bloom filters.

random hash function h

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Today: Count-min sketch – a random hashing based method closely related to bloom filters.

Will use A[h(x)] to estimate f(x), the frequency of x in the stream. I.e., $|\{x_i : x_i = x\}|$.

Use $A[\mathbf{h}(x)]$ to estimate f(x).

Claim 1: We always have $A[h(x)] \ge f(x)$. Why?

Use $A[\mathbf{h}(x)]$ to estimate f(x).

Claim 1: We always have $A[h(x)] \ge f(x)$. Why?

• A[h(x)] counts the number of occurrences of any y with h(y) = h(x), including x itself.

Use $A[\mathbf{h}(x)]$ to estimate f(x).

Claim 1: We always have $A[h(x)] \ge f(x)$. Why?

- A[h(x)] counts the number of occurrences of any y with h(y) = h(x), including x itself.
- $\cdot \underbrace{A[h(x)]}_{} = \underbrace{f(x)}_{} + \underbrace{\sum_{y \neq x: h(y) = h(x)}}_{} f(y).$

$$A[h(x)] = \underbrace{f(x)}_{y \neq x: h(y) = h(x)} + \underbrace{\sum_{y \neq x: h(y) = h(x)} f(y)}_{\text{error in frequency estimate}}$$

$$A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y) .$$

Expected Error:

$$\mathbb{E}\left[\sum_{y\neq x: h(y)=h(x)} f(y)\right] =$$

$$A[h(x)] = f(x) + \sum_{\substack{y \neq x: h(y) = h(x)}} f(y) .$$

error in frequency estimate

Expected Error:

$$\mathbb{E}\left[\sum_{y \neq x: h(y) = h(x)} f(y)\right] = \sum_{y \neq x} \Pr(h(y) = h(x)) \cdot f(y)$$

$$A[h(x)] = f(x) + \sum_{\substack{y \neq x: h(y) = h(x)}} f(y) . \qquad \text{where}$$
error in frequency estimate

Expected Error:

$$\mathbb{E}\left[\sum_{y \neq x: h(y) = h(x)} f(y)\right] = \sum_{y \neq x} \Pr(\underline{h(y)} = \underline{h(x)}) \cdot f(y)$$
$$= \sum_{x \neq x} \frac{1}{m} \cdot f(y)$$

$$A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y) .$$

error in frequency estimate

Expected Error:

$$\mathbb{E}\left[\sum_{y\neq x: h(y)=h(x)} f(y)\right] = \sum_{y\neq x} \Pr(h(y) = h(x)) \cdot f(y)$$

$$= \sum_{y\neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (\underline{n} - \underline{f(x)}) \le \frac{n}{m}$$

$$= \sum_{y\neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (\underline{n} - \underline{f(x)}) \le \frac{n}{m}$$

$$A[h(x)] = f(x) + \sum_{\substack{y \neq x: h(y) = h(x)}} f(y) \cdot \frac{3}{x} \cdot \frac{3}{x} \cdot \frac{5}{x} \cdot \frac{3}{x} \cdot \frac{10}{x}$$
Expected Error:

$$F(x) = f(x) + \sum_{\substack{y \neq x: h(y) = h(x) \\ \text{error in frequency estimate}}} \frac{3}{x} \cdot \frac{3}{x} \cdot \frac{5}{x} \cdot \frac{3}{x} \cdot \frac{10}{x} \cdot \frac{10}{x}$$

$$\mathbb{E}\left[\sum_{y\neq x: h(y)=h(x)} f(y)\right] = \sum_{y\neq x} \Pr(h(y) = h(x)) \cdot f(y)$$

$$= \sum_{y\neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \le \frac{n}{m}$$

What is a bound on probability that the error is $\geq \frac{2n}{m}$?

$$A[h(x)] = f(x) + \sum_{\substack{y \neq x: h(y) = h(x)}} f(y) .$$

error in frequency estimate

Expected Error:

$$\mathbb{E}\left[\sum_{y\neq x: h(y)=h(x)} f(y)\right] = \sum_{y\neq x} \Pr(h(y) = h(x)) \cdot f(y)$$
$$= \sum_{y\neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \le \frac{n}{m}$$

What is a bound on probability that the error is $\geq \frac{2n}{m}$?

Markov's inequality:
$$\Pr\left[\underbrace{\sum_{y\neq x:h(y)=h(x)}f(y)}_{\Leftrightarrow \#(w)=h(x)}\underbrace{f(y)}_{=h(x)}\underbrace{\frac{2n}{m}}\right] \leq \frac{1}{2}.$$

$$A[h(x)] = f(x) + \sum_{\substack{y \neq x: h(y) = h(x)}} f(y) .$$

error in frequency estimate

Expected Error:

$$\mathbb{E}\left[\sum_{y\neq x: h(y)=h(x)} f(y)\right] = \sum_{y\neq x} \underbrace{\Pr(h(y)=h(x)) \cdot f(y)}_{\text{Fig}}$$
$$= \sum_{y\neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \le \frac{n}{m}$$

What is a bound on probability that the error is $\geq \frac{2n}{m}$?

Markov's inequality: $\Pr\left[\sum_{y\neq x:h(y)=h(x)}f(y)\geq \frac{2n}{m}\right]\leq \frac{1}{2}.$

What property of h is required to show this bound? a) fully random b) pairwise independent c) 2-universal d) locality sensitive

$$A[h(x)] = f(x) + \sum_{\substack{y \neq x: h(y) = h(x)}} f(y) .$$

error in frequency estimate

Expected Error:

$$\mathbb{E}\left[\sum_{y \neq x: h(y) = h(x)} f(y)\right] = \sum_{y \neq x} \Pr(h(y) = h(x)) \cdot f(y)$$
$$= \sum_{y \neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \le \frac{n}{m}$$

What is a bound on probability that the error is $\geq \frac{2n}{m}$?

Markov's inequality:
$$\Pr\left[\sum_{y\neq x: h(y)=h(x)} f(y) \ge \frac{2n}{m}\right] \le \frac{1}{2}$$
.

What property of h is required to show this bound? a) fully random b) pairwise independent c) 2-universal d) locality sensitive

Claim: For any x, with probability at least 1/2,

$$f(x) \leq \underline{A[h(x)]} \leq f(x) + \frac{2n}{m}.$$

Claim: For any x, with probability at least 1/2, $\frac{2n}{m} : \frac{2n}{2k/\ell} = \frac{n}{k} \cdot \ell$ $f(x) \le A[h(x)] \le f(x) + \frac{2n}{m}.$

To solve the (ϵ, k) -Frequent elements problem, set $m = \frac{2k}{\epsilon}$.

Claim: For any x, with probability at least 1/2,

$$f(x) \le A[h(x)] \le f(x) + \frac{2n}{m}$$
.

To solve the (ϵ, k) -Frequent elements problem, set $m = \frac{2k}{\epsilon}$. How can we improve the success probability?

Claim: For any x, with probability at least 1/2,

$$f(x) \le A[\mathbf{h}(x)] \le f(x) + \frac{2n}{m}.$$

To solve the (ϵ, k) -Frequent elements problem, set $m = \frac{2k}{\epsilon}$. How can we improve the success probability? Repetition.

Estimate $\underline{f(x)}$ with $\underline{\tilde{f}(x)} = \underline{\min_{i \in [t]} A_i[\mathbf{h}_i(x)]}$. (count-min sketch)

Estimate f(x) with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (count-min sketch)

Estimate f(x) with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (count-min sketch) Why min instead of mean or median?

Estimate f(x) with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (count-min sketch)

Why min instead of mean or median? The minimum estimate is always the most accurate since they are all overestimates of the true frequency!

Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

• For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$: $\underline{f(x)} \leq A_i[\mathbf{h}_i(x)] \leq \underline{f(x)} + \frac{\epsilon n}{k}.$

Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

• For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$: $f(x) \leq A_i[\mathbf{h}_i(x)] \leq f(x) + \frac{\epsilon n}{k}.$

• What is $\Pr[f(x) \le \tilde{f}(x) \le f(x) + \frac{\epsilon n}{k}]$?

Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

• For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$: $f(x) \leq \underline{A_i[h_i(x)]} \leq f(x) + \frac{\epsilon n}{k}.$

What is
$$\Pr[f(x) \le \tilde{f}(x) \le f(x) + \frac{\epsilon n}{k}]$$
? $1 - 1/2^t$.

Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

• For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$: $f(x) \leq A_i[\mathbf{h}_i(x)] \leq f(x) + \frac{\epsilon n}{k}.$

- What is $\Pr[f(x) \le \tilde{f}(x) \le f(x) + \frac{\epsilon n}{k}]$? $1 1/2^t$.
- To get a good estimate with probability $\geq 1 \delta$, set $t = \log(1/\delta)$.

COUNT-MIN SKETCH

Upshot: Count-min sketch lets us estimate the frequency of every item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1 - \delta$ in $O(\log(1/\delta) \cdot k/\epsilon)$ space.

COUNT-MIN SKETCH

Upshot: Count-min sketch lets us estimate the frequency of every item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1 - \delta$ in $O(\log(1/\delta) \cdot k/\epsilon)$ space.

• Accurate enough to solve the (ϵ, k) -Frequent elements problem – distinguish between items with frequency $\frac{n}{k}$ and those with frequency $(1 - \epsilon)\frac{n}{k}$.

COUNT-MIN SKETCH

 $O(\log(1/\delta) \cdot k/\epsilon)$ space.

$$f(x_i) < f(x_i) + \frac{\epsilon n}{k}$$
 with probability $\geq 1 - \delta$ in

· Accurate enough to solve the (ϵ, k) -Frequent elements

problem – distinquish between items with frequency
$$\frac{n}{k}$$
 and those with frequency $(1 - \epsilon)\frac{n}{k}$.

How should we set δ if we want a good estimate for all items

 \cdot How should we set δ if we want a good estimate for all items feguris.

TE; he to our that I fail to estimate fki)

Pr(Ei) S of Pr(Ei UEz U... En) S Pr(Ei) S no well

IDENTIFYING FREQUENT ELEMENTS

$$O(\log \frac{k}{E})$$
 Space. $\frac{2}{k}$ (1-E)

Count-min sketch gives an accurate frequency estimate for every item in the stream. But how do we identify the frequent items without having to store/look up the estimated frequency for all elements in the stream?

IDENTIFYING FREQUENT ELEMENTS

Count-min sketch gives an accurate frequency estimate for every item in the stream. But how do we identify the frequent items without having to store/look up the estimated frequency for all elements in the stream?

One approach:
$$\times_{i}$$
 \times_{i} \times_{i} \times_{i}

- When a new item comes in at step i, check if its estimated frequency is $\geq i/k$ and store it if so.
- At step i remove any stored items whose estimated frequency drops below i/k.
- Store at most O(k) items at once and have all items with frequency $\geq n/k$ stored at the end of the stream.

O(K) the to high x; an increment buckets Time Complexity O(k) for to check if my of stored items have Freq $\leq \frac{1}{10}$ O(+, 2) Questions on Frequent Elements? + + . size high fuction. - Defined frequent items

- Reluxed it to the (E, K) - Freq. item - Used count - min sketch (variant on Bloom Alter) to solve til problem in O(logn &) sparce << 0(n)