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LOGISTICS

- Problem Set 2 is due this upcoming Monday. Get an early
start on it.

- Problem Set 1 grades have been released. Mean: 34/41,
Median 36/41.

- If you are unhappy with your grade, ping me and let's chat
about strategies going forward. If you believe there is a
grading error, send a private message to the instructors on
Piazza or ask during office hours.

- The midterm will be any 2 hour slot on 10/8-10/9. We won't
have class on 10/8.

- Study guide/practice questions will be released this week.



SUMMARY

Last Class:

- MinHash as a locality sensitive hash function for Jaccard
similarity

- Near neighbor search with LSH signatures and repeated
hash tables..

- SimHash for cosine similarity.
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- MinHash as a locality sensitive hash function for Jaccard
similarity

- Near neighbor search with LSH signatures and repeated
hash tables..

- SimHash for cosine similarity.
This Class: Frequent Items Estimation

- Count-min sketch (random hashing for frequent element
estimation).
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Next Few Classes:

* Random compression methods for high dimensional vectors. The
Johnson-Lindenstrauss lemma.

- Connections to the weird geometry of high-dimensional space.

After That: Spectral Methods

- PCA, low-rank approximation, and the singular value
decomposition.

- Spectral clustering and spectral graph theory.

Will use a lot of linear algebra. May be helpful to refresh.

- Vector dot product, addition, Euclidean norm. Matrix vector
multiplication.

Cinear independence, column span, orthogonal bases, rank.

- _Orthogonal projection, eigendecomposition, linear systems. 3
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k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x1, ..., x, (with possible duplicates). Return any item
at appears at least § times.
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k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x1, ..., x, (with possible duplicates). Return any item
at appears at least § times.

Xy X, X3 X, X5 Xg Xy Xg Xq
5 12 3 3 4 10 3
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v

- What is the maximum number of items that must be
retur ?
returneds a) n b))k c) n/k d) logn
- Trivial with O(n) space - store the count for each item and

return the one that appears > n/k times.
- Can we do it with less space? l.e, without storing all n items?
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Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos
watched on Youtube, Google searches, etc.)

- Finding very frequent IP addresses sending requests (to
detect DoS attacks/network anomalies).

- ‘lceberg queries’ for all items in a database with frequency
above some threshold.

Generally want very fast detection, without having to scan
through database/logs. l.e., want to maintain a running list of
frequent items that appear in a stream.
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FREQUENT ITEMSET MINING

Association rule learning: A very common task in data mining is to
identify common associations between different events.

Cart 3

- Identified via frequent itemset counting. Find all sets of k items
that appear many times in the same basket.
- Frequency of an itemset is known as its support.

- A single basket includes many different itemsets, and with many
different baskets an efficient approach is critical. E.g.,, baskets are
Twitter users and itemsets are subsets of who they follow. 6
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APPROXIMATE FREQUENT ELEMENTS

Issue: No algorithm using o(n) space can output just the items
with frequency > n/k. Hard to tell between an item with
frequency n/k (should be output) and n/k — 1 (should not be

output).
Xy X X3 Xq X5 Xg Xn-n/k+1 Xn
3 |12 9 |27 ] 4 |100] 7 3 s
—

n/k-1 occurrences

(e, R)-Frequent Items Problem: Consider a stream of n items
X1,...,Xn. Return a set F of items, including all items that
appear at least 7 times and only items that appear at least
(1—¢€)- 3 times.

- An example of relaxing to a ‘promise problem’: for items
with frequencies in [(1—¢) - §, §] no output guarantee. 7
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Today: Count-min sketch — a random hashing based method

closely related to bloom filters. ,
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Today: Count-min sketch — a random hashing based method
closely related to bloom filters.

random hash function h

Al * -
Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. l.e, |[{xj : x; = x}|.
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Use A[h(x)] to estimate f(x).
Claim 1: We always have A[h(x)] > f(x). Why?

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.
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f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.




COUNT-MIN SKETCH ACCURACY

Xy Xp Xz Xq e Xn

random hash function h

mIengtharrayAl 4 2 1 | 6 . 1 2]

Use A[h(x)] to estimate f(x).
Claim 1: We always have A[h(x)] > f(x).
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f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10
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f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.
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f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10
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f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10
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Claim: For any x, with probability at least 1/2,

F(x) < AI(O] < F) + 2.
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f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.
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f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.
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Claim: For any x, with probability at least 1/2,
=

f(x) < AI(O] < F) + 2.

m

To solve the (e, R)-Frequent elements problem, set m = Z—f

How can we improve the success probability?

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.
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Claim: For any x, with probability at least 1/2,
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To solve the (e, R)-Frequent elements problem, set m = Z—f

How can we improve the success probability?

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.
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Xy Xp X3 Xg e Xq

t random hash functions

A, 2 5 1 0 6 12: 1 8 4

tlengthmarrays A2 | 1 | 6 | 1 | 10 78.4 11| 3 | 5

At:l 52 | 6 | 3 | 12 33:3 2

Estimate f(x) with f(x) = min;cg Aihi(x)]. (count-min sketch)
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Estimate f(x) with f(x) = min;cg Aihi(x)]. (count-min sketch)
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Estimate f(x) with f(x) = min;cg Aihi(x)]. (count-min sketch)

Why min instead of mean or median?
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Xy Xp X3 Xg e Xq

A

L |
tlength m arrays Az \1 6 | 1 10)_- 4 11| 3 5
6 | 3 |12 33.3 2

Estimate f(x) with f(x) = min;cg Aihi(x)]. (count-min sketch)
Why min instead of mean or median? The minimum estimate
is always the most accurate since they are all overestimates of
the true frequency!
12
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Xy Xy X3 X4 R

Estimate f(x) by f(x) = minjcy Ailhi(x)]

* For every x and i € [t], we know that for m = % with probability
>1/2
fx) < Ailhi(x)] < f(x) +
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Xn

t random hash functions
X w\. 41

tlength m arrays Az

Estimate f(x) by f(x) = minjcy Ailhi(x)]
* For every x and i € [t], we know that for m = %, with probability

21/2 en
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* What is Pr[f(x) < f(x) < f(x) + <1]?
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Xy Xy X3 X4 R

Estimate f(x) by f(x) = minjcy Ailhi(x)]
* For every x and i € [t], we know that for m = % with probability

21/2 en
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* What is Pr[f(x) < f(x) < L7 1=1/28
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Xy Xy X3 X4 R

Estimate f(x) by f(x) = minjcy Ailhi(x)]
* For every x and i € [t], we know that for m = % with probability

21/2 en

O = AilhiG)] < 0 + -

- What is Pr[f(x) < f(x) < f(x) + <2]? 1—1/2
- To get a good estimate with probability > 1 — 6, set t = log(1/6).
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Upshot: Count-min sketch lets us estimate the frequency of
every item in a stream up to error ! with probability > 1—4din
O (log(1/0) - R/€) space.
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Upshot: Count-min sketch lets us estimate the frequency of
every item in a stream up to error ! with probability > 1—4din
O (log(1/6) - k/€) space. -

- Accurate enough to solve the (e, R)-Frequent elements
problem - distinquish between items with frequency £ and
those with frequency (1—¢€)2. En

14
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Upshot: Count-min sketch lets us estimate the frequency of

every item in a stream up to error ! with probability > 1—4din
O (log(1/0) - R/€) space. Q(\abtnﬁ s <
¢

- Accurate enough to solve the (e, R)-Frequent elements
problem - distinquish between items with frequency £ and
those with frequency (1—¢€)2.

- How should we set § if we want a good estimate for all items
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IDENTIFYING FREQUENT ELEMENTS
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Count-min sketch gives an accurate frequency estimate for

every item in the stream. But how do we identify the frequent
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IDENTIFYING FREQUENT ELEMENTS

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequency
for all elements in the stream?

One approach: Xy YRR €

(I

Xn

- When a new item comes in at step i, check if its estimated
frequency is > i/k and store it if so.

- At step i remove any stored items whose estimated
frequency drops below i/k.

- Store at most O(R) items at once and have all items with
frequency > n/k stored at the end of the stream.
=
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