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LOGISTICS

- We uploaded Problem Set 2 last night. It will be due Monday
9/28 at 8pm.

- Start early. Give yourself time to mull over the problems.
- Some reminders from your friendly 514 grading staff:

- You need to mark your group-mates as part of the submission
in Gradescope. Just having their name on written on the front
page is not enough.

- Tag the location of each individual subquestion, not just the
first page of the full question.

- If you write in pencil please be sure to write darkly. It can be
very hard to read once scanned.

- Quiz 4 is due Monday at 8pm.



SUMMARY

Last Class:

- Boosting the success probability of distinct elements
estimation with the median trick.

- Sketched the idea of practical distinct elements algorithms:
Loglog and HyperLoglog.

- Started on fast similarity search. MinHashing to estimate the
Jaccard similarity between two sets.
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Last Class:

- Boosting the success probability of distinct elements
estimation with the median trick.

- Sketched the idea of practical distinct elements algorithms:
Loglog and HyperLoglog.

- Started on fast similarity search. MinHashing to estimate the
Jaccard similarity between two sets.

This Class:

- MinHash and locality sensitive hashing (LSH).
- Application of LSH to fast similarity search.



JACCARD SIMILARITY

PEUETIR __ |AnB| __ # shared elements
Jaccard Similarity: J(A, B) = iAuBi = ## total elements -

0

- Near Neighbor Search: Have a database of n sets/bit strings
and given a set A, want to find if it has high similarity to
anything in the database. Naively Q(n) time.

- All-pairs Similarity Search: Have n different sets/bit strings.
Want to find all pairs with high similarity. Naively Q(n?) time.

Two Common Use Cases:



MINHASHING FOR JACCARD SIMILARITY

MinHash(A)\= mingea h(a) where h : U — [0,1] is random.
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LOCALITY SENSITIVE HASHING

Upshot: MinHash reduces estimating the Jaccard similarity to
checking equality of a single number.

Pr(MinHash(A) = MinHash(8)) = J(A, B).

- An instance of (LSH).

- A hash function where the collision probability is higher when two
inputs are more similar (can design different functions for
different similarity metrics.)
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LSH FOR SIMILARITY SEARCH

How does locality sensitive hashing (LSH) help with similarity
search?
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- Near Neighbor Search: Given item x, compute h(x). Only
search for similar items in the h(x) bucket of the hash table.

- All-pairs Similarity Search: Scan through all buckets of the
hash table and look for similar pairs within each bucket.



LSH FOR SIMILARITY SEARCH

How does locality sensitive hashing (LSH) help with similarity

search?
ty Sensitive Hash Function
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- Near Neighbor Search: Given item x, computegﬁ. Only
search for similar items in the h(x) bucket of the hash table.

- All-pairs Similarity Search: Scan through all buckets of the
hash table and look for similar pairs within each bucket.

- We will use h(x) = g(MinHash(x)) where g : [0,1] — [n] is a
random hash function.



LSH WITH MINHASH

Goal: Given a document y, identify all documents x in a
database with Jaccard similarity (of their shingle sets)

J(x,y) >1/2.



LSH WITH MINHASH

Goal: Given a document y, identify all documents x in a
database with Jaccard similarity (of their shingle sets)

J(x.y) = 1/2.
Our Approach:

- Create a hash table of size m, choose a random hash
function g : [0,1] — [m], and insert every item x into bucket
g(MinHash(x)). Search for items similar to y in bucket
g(MinHash(y)).



LSH WITH MINHASH

Goal: Given a document y, identify all documents x in a
database with Jaccard similarity (of their shingle sets)

J(x.y) = 1/2.
Our Approach:

- Create a hash table of size m, choose a random hash
function g : [0,1] — [m], and insert every item x into bucket
g(MinHash(x)). Search for items similar to y in bucket
g(MinHash(y)).

- What is Pr[g(MinHash(x)) = g(MinHash(y))] assuming
J(x,y) =1/2 and g is collision free?

w@wH (X» ° 4 (mH @3& Pf@fﬂf x) ﬂ‘%’j
= Tk 2 I



LSH WITH MINHASH

Goal: Given a document y, identify all documents x in a
database with Jaccard similarity (of their shingle sets)
J(x,y) =1/2.

Our Approach:

- Create a hash table of size m, choose a random hash
function g : [0,1] — [m], and insert every item x into bucket
g(MinHash(x)). Search for items similar to y in bucket
g(MinHash(y)).

- What is Pr[g(MinHash(x)) = g(MinHash(y))] assuming
J(x,y) =1/2 and g is collision free?

- For every document x in your database with J(x,y) > 1/2
what is the probability you will find x in bucket

g(MinHash(y))? {7 _
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With a simple use of MinHash, we miss a match x with J(x,y) =1/2
with probability 1/2. How can we reduce this false negative rate?

Repetition: Run MinHash t times independently, to produce hash
values MHq(x), ..., MH(x). Apply random hash function g to map all
these values to locations in t hash tables.

- To search for items similar to y, look at all items in bucket
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REDUCING FALSE NEGATIVES

With a simple use of MmHash we miss a match x with J(x,y) = 1/2
with probability 1/2. How can we reduce this false negative rate?

Repetition: Run MinHash t times independently, to produce hash
values MHq(x), ..., MH(x). Apply random hash function g to map all
these values to locations in t hash tables.

- To search for items similar to y, look at all items in bucket
g(MH(y)) of the 15 table, bucket g(MH,(y)) of the 2" table, etc.

+ What is the probability that x with J(x,y) = 1/2 is in at least one of
these buckets, assuming for simplicity g has no collisions?
1— (probability in no buckets) =1 — (%)t ~ .99 fort=7.

* What is the probability that x with J(x,y) = 1/4 is in at least one of
these buckets, assuming for simplicity g has no collisions?
1— (probability in no buckets) =1— (2 ) ~ .87fort=7.

Potential for a lot of false positives! Slows down search time. 8



BALANCING HIT RATE AND QUERY TIME

We want to balance a small probability of false negatives (a high hit
rate) with a small probability of false positives (a small query time.)
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We want to balance a small probability of false negatwes (a high hit
rate) with a small probability of fal se pasitives (a small query time.)
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Create t hash tables. Each is indexed into not with a single MinHash
value, but with r values, appended together. A length r signature. 9
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Consider searching for matches in t hash tables, using MinHash
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BALANCING HIT RATE AND QUERY TIME

Consider searching for matches in t hash tables, using MinHash
signatures of length r. For x and y with Jaccard similarity J(x,y) = s:

- Probability that a single hash matches.
Pr [MH; j(x) = MH, j(y)] = J(x,y) = =.

- Probability that x and y having matching signatures in repetition i.
Pr [MH;1(X), ..., MH; [(x) = MH;1(y), ..., MH; (y)] =5".
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THE S-CURVE

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x,y) = s match in at
least one repetition is: 1 — (1 —s")".
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THE S-CURVE

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x,y) = s match in at
least one repetition is: 1 — (1 —s")".
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THE S-CURVE

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x,y) = s match in at

least one repetition is: 1 — (1 —s")".
Y
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THE S-CURVE

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x,y) = s match in at
least one repetition is: 1 — (1 —s")".

V=L0O 1
A s 30 vl =5 t=30

o

Hit Probability
o o o
a0

0 0.2 0.4 0.6 0.8 1
Jaccard Similarity s

rand t are tuned depending on application. ‘Threshold” when hit
probability is 1/2 is ~ (1/t)/". E.g, ~ (1/30)"/* = .51 in this case. 1
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With signature length r = 25 and repetitions t = 50, hit probability
forJ(x,y) =sis1—(1—5s7)".

- Hit probability for J(x,y) > .9 is > 1— (1 —.9%0)*0 ~ .98

- Hit probability for J(x,y) € [.7,.9] is <1— (1 —.92°)* ~ .98

- Hit probability for J(x,y) < .7is < 1— (1—.729)*0 ~ .007

Expected Number of Items Scanned: (proportional to query time)

<10+ .98 % 10,000 + .007 % 9,989,990 ~ 50,000 <« 10,000, 000.




HASHING FOR DUPLICATE DETECTION

Hash Table Bloom Filters | _. .er.|Hash Distinct
S/lr\mlarlty Search Elements
P “T; AP

Chgck if xis a Check if x isﬁw“k if xisa Cqunt # of

duplicate of any . duplicate of any y items,

Goal . duplicate of y | . .
y in database | . in database excluding
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duplicates.
; ; O(n -t) items loglogn
Space 0(n) items O(n) bits (when' tables used) 0 (6_2
Query Time o) o) Potentially o(n) NA

Approximate
Duplicates?

X

X

v/

X

All different variants of detecting duplicates/finding matches
in large datasets. An important problem in many contexts!




HASHING FOR DUPLICATE DETECTION

. MinHash Distinct
LLRINELD BloomiirSes Similarity Search Elements
Check if x is a . Check if x is a Count # of
. Check if x is a . .
duplicate of any . duplicate of any y items,
Goal . duplicate of y|| . .
y in database | . in database excluding
in database. .
duplicates.
. , O(n - t) items loglogn
Space 0(n) items 0(n) bits (whenttablesused) | © ( p
Query Time o(1) o(1) Potentially o(n) NA

Approximate
Duplicates?

X

X v

LS

All different variants of detecting duplicates/finding matches
in large datasets. An important problem in many contexts!




GENERALIZING LOCALITY SENSITIVE HASHING

Repetition and s-curve tuning can be used for fast similarity search
with any similarity metric, given a locality sensitive hash function for
that metric.
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SIMHASH FOR COSINE SIMILARITY

SimHash Algorithm: LSH for cosine similarity.
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SIMHASH FOR COSINE SIMILARITY

SimHash Algorithm: LSH for cosine similarity.

SimHash(x) = 1

Xz

random plane

X3

SimHash(x) = -1

SimHash(x) = sign((x, t)) for a random vector t.
What is Pr[SimHash(x) = SimHash(y)]?
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SIMHASH FOR COSINE SIMILARITY

What is Pr[SimHash(x) = SimHash(y)]?
\

SimHash(x) # SimHash(y) when the plane separates x from y.
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SIMHASH FOR COSINE SIMILARITY

What is Pr[SimHash(x) = SimHash(y)]?

SimHash(x) # SimHash(y) when the plane separates x from y.

SimHash(x) = 1

-—

v

SimHash(y) = -1
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- Pr[SimHash(x) # SimHash(y)] =44
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SIMHASH FOR COSINE SIMILARITY

What is Pr[SimHash(x) = SimHash(y)]?

SimHash(x) # SimHash(y) when the plane separates x from y.

) @5(9 (xiy)) * |
X
. C!/\\\S\q»\ %/
SimHash(x) = 1 LS (@()\ j})
4; K
J
Co h\ <M
SimHash(y) = -1
y
* Pr[SimHash(x) # SimHash(y)] = 2&4 f

. : o 1 6(xy) . cos(8(x.y))+1
Pr[SimHash(x) = SimHash(y)] =1 — & . "
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HASHING FOR NEURAL NETWORKS

Many applications outside traditional similarity search. E.g,
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HASHING FOR NEURAL NETWORKS
Input Layer Layer 1 Layer 2
Nonlinearity o /
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HASHING FOR NEURAL NETWORKS
Input Layer Layer 1 Layer 2
Nonlinearity o /

n,—=a<2w(xj,ni)-xj>=o( )

Jj=1

- Important neurons have high activation o({w;, x)).

- Since o is typically monotonic, this means large (w;, X).

- cos(f(wj,x)) = m Thus these neurons can be found
very quickly using LSH for cosine similarity search.

- Store each weight vector w; (corresponding to each node) in
a set of hash tables and check inputs x for similarity to

these stored vectors. o



