COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.
Lecture 6

LOGISTICS

- Problem Set 1is due tomorrow at 8pm in Gradescope.

- Quiz 3 will be due next Monday at 8pm on Moodle.

LAST TIME

Last Class:

- Exponential concentration bound wrap up (central limit
theorem, Chernoff bound).
- Bloom Filters:

- Random hashing to maintain a large set in small space.
- Discussed applications and how the false positive rate is
determined.

This Class:

- Wrap up Bloom filters.

- Start on streaming algorithms - distinct items counting.

BLOOM FILTERS

m-bit array. Each inserted item is marked with k bits,
determined by k random hash functions.

Insertions: X y

m bitarray A| 1 1 0 1

0 0 1
v \
Queries: X w
- query(x) = 1if and only if all bits that x hashes to are 1 (i.e,,
Alh(X)] = ... = A[hp(X)] = 1.)
- Can be false positives, but no false negatives.

ANALYSIS

Step 1: What is the probability that after inserting n elements, the /™"
bit of the array A is still 0?

Pr(A[i] = 0) = (1 - 1>hn

m
Step 2: What is the probability that querying a new item w gives a
false positive?

Pr(Alhy(w)] = ... = Alhp(w)] = 1)
Pr(Alhi(w)] = 1) x ... x Pr(A[hg(w)] = 1)

N
= (1 - e‘%) Actually Incorrect! Dependent events.

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hy, ... hg: hash functions, A: bit array, §: false positive rate. 4

CORRECT ANALYSIS SKETCH

Step 1: To avoid dependence issues, condition on the event that the
A has t zeros in it after n insertions, for some t < m. For a

non-inserted element w, after conditioning on this event we
correctly have:

Pr(A[hi(w)] = ... = Alhg(w)] = 1)
= Pr(A[h(w)] = 1) x ... x Pr(A[h(w)] = 1).
l.e., the events Alhy(w)] = 1,..., A[hg(w)] = 1 are independent
conditioned on the number of bits set in A. Why?
- Conditioned on this event, for any j, since h; is a fully random hash
function, Pr(A[hj(w)] = 1) = L.
- Thus conditioned on this event, the false positive rate is (1 — %)h

* It remains to show that £ ~ e~ with high probability. We already
have that E[L] = 1 S Pr(A[] = 0) ~ e~ .

CORRECT ANALYSIS SKETCH

Need to show that the number of zeros t in A after n insertions
is bounded by O (e—%”) with high probability.

Can apply Theorem 2 of: http://cglab.ca/~morin/
publications/ds/bloom-submitted.pdf

http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf
http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf

FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n
_m\ R
items inserted § ~ (1 — eTk))

Movies

5 1|a

Users

- We have 100 million users and 10,000 movies. On average each
user has rated only 10 movies so of these 10™ possible
(user,movie) pairs, only 10 % 100,000,000 = 10° = n (user,movie)
pairs have non-empty entries in our table.

- We allocate m = 8n = 8 x 107 bits for a Bloom filter (1 GB). How
should we set k to minimize the number of false positives?

BLOOM FILTER NOTE

An observation about Bloom filter space complexity:

kn

R
False Positive Rate: § ~ (1 — e‘ﬁ) .

For an m-bit bloom filter holding n items, optimal number of
hash functions kis: k=1In2- 10

If we want a false positive rate < j how big does m need to be
In comparison to n?

m = O(logn), m = 0O(v/n), m — 0(n), m = 0(n?)?

If m= 5, optimal k =1, and failure rate is:

n/ln21 11 1
(-2) =2

l.e,, storing n items in a bloom filter requires O(n) space. So
what's the point? Truly O(n) bits, rather than O(n - item size). 8

Questions on Bloom Filters?

STREAMING ALGORITHMS

Stream Processing: Have a massive dataset X with n items
X1,X2,...,Xp that arrive in a continuous stream. Not nearly
enough space to store all the items (in a single location).

- Still want to analyze and learn from this data.

- Typically must compress the data on the fly, storing a data
structure from which you can still learn useful information.

- Often the compression is randomized. E.g., bloom filters.

- Compared to traditional algorithm design, which focuses on
minimizing runtime, the big question here is how much
space is needed to answer queries of interest.

SOME EXAMPLES

- Sensor data: images from telescopes (15 terabytes per night from
the Large Synoptic Survey Telescope), readings from seismometer
arrays monitoring and predicting earthquake activity, traffic
cameras and travel time sensors (Smart Cities), electrical grid
monitoring.

Rl State Line

MINS

- Internet Traffic: 500 million Tweets per day, 5.6 billion Google
searches, billions of ad-clicks and other logs from instrumented
webpages, IPs routed by network switches, ...

- Datasets in Machine Learning: When training e.g. a neural network
on a large dataset (ImageNet with 14 million images), the data is 7

R [[P R SR [T S [S T

DISTINCT ELEMENTS

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xpn, OUtputestimate the number of distinct elements in
the stream. E.g,,

1,5,7,5,2,1 — &4 distinct elements
Applications:

- Distinct IP addresses clicking on an ad or visiting a site.

- Distinct values in a database column (for estimating sizes of
joins and group bys).

- Number of distinct search engine queries.

- Counting distinct motifs in large DNA sequences.

Google Sawzall, Facebook Presto, Apache Drill, Twitter Algebird

Breakout Rooms: Discuss ways you might solve this problem
without storing the full list of items seen. 12

DISTINCT ELEMENTS IDEAS

13

HASHING FOR DISTINCT ELEMENTS

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xpn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

- Leth: U — [0,1] be a random hash function (with a real valued
output)

5=
- Fori=1,...,n

- s:=min(s, h(x;))
- Returnd =1 —1

S

~ T On

HASHING FOR DISTINCT ELEMENTS

Min-Hashing for Distinct Elements:

* Leth: U — [0,1] be a random hash function (with a real valued output)
csi=1
- Fori=1,...,n
-+ s:=min(s, h(x))
* Returnd = ! —1

S
—eo—o —o—o—+
0 h(xs) h(x;) h(x) hix;) 1
h(x,)

- After all items are processed, s is the minimum of d points chosen
uniformly at random on [0, 1]. Where d = # distinct elements.

- Intuition: The larger d is, the smaller we expect s to be.

- Same idea as Flajolet-Martin algorithm and HyperlLoglog, except

they use discrete hash functions. 5

PERFORMANCE IN EXPECTATION

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

s
+—o—o— —o—t
0 h{xs) h(xp) h(x;) hixs) 1
h(x,)
1 . o0
E[s] = a7 (using E(s) = / Pr(s > x)dx) + calculus)
0

- So estimate of d = % — 1 output by the algorithm is correct if s
exactly equals its expectation. Does this mean E[d] = d? No, but:

- Approximation is robust: if |[s — E[s]| < e - E[s] for any € € (0,1/2)
and a small constant ¢ < 4

(1—ce)d < d < (1+ ce)d
16

INITIAL CONCENTRATION BOUND

So question is how well s concentrates around its mean.

E[s] = 1 and Var[s] <

a1 5 (also via calculus).

1
(d+1)
Chebyshev's Inequality:

Pr[|s — E[s]| > €E[s]] < (\6/1;[;[]512 - elz

Bound is vacuous for any e < 1.

s: minimum of d distinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d = % — 1. estimate of # distinct elements d.

17

IMPROVING PERFORMANCE

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

* Leth: U —[0,1] be a random hash functionlet

hi,hy, ..., hy : U — [0,1] be random hash functions
- s:=1
S1,S2, Sp =1
- Fori=1,...,n
©Si= min(s h(-))
- For j=1...k s; := min(s;, h;(x;))
- FZJ:'\S

. Retuma:g—1

ANALYSIS

S = %Zfﬁ s;. Have already shown thatforj=1,... k

E[s] = %H — E[s] = %H (linearity of expectation)
<

Var[sj] < 1 = Varls] (linearity of variance)

1
(d+1)? k- (d+1)

Chebyshev Inequality:
var[s] E[s]?’/k 1 €

Prils = Efs]| = E[s] S(@Es)? - QRSP ke

f?:

1
€25

s;: minimum of d distinct hashes chosen randomly over [0,1]. s = % Z;; Sj.

d= % — 1: estimate of # distinct elements d.

19

SPACE COMPLEXITY

Hashing for Distinct Elements:

+ Lethy, hy,... hy: U—[0,1] be random hash functions
*51,S2,...,5¢:=1
- Fori=1,...,n
- For j=1,.., k, s; := min(s;, hj(x;))
T Si= %Zf:w Sj

. Returna:§f1

S, S, S,
—o—000—00-

© Setting k = ', algorithm returns d with |d — a| < 4e - d with
probability at least 1 — 4.

- Space complexity is k = - real numbers s,,.... 5.

- § = 5% failure rate gives a factor 20 overhead in space complexity. 20

