COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.
Lecture 5

LOGISTICS

- Problem Set 1is due this Friday, 9/11 at 8pm in Gradescope.

- If you can, we encourage you to make your questions public
on Piazza.

Quiz 2:

- Class Pace: 48% just right, 42% a bit too fast, 5% a bit too
slow, 5% way too fast.

- | receive 20 download requests per day and serve each in
within 15 seconds with probability 99%. Upper bound the
probability | fail to serve at least one request.

LAST TIME

Last Class: Concentration bounds beyond Markov's inequality

- Chebyshev's inequality and the law of large numbers.
- Exponential concentration bounds from higher moments.

- Bernstein’s Inequality
This Time:

- Finish up exponential concentration bounds and the central
limit theorem.

INTERPRETATION AS A CENTRAL LIMIT THEOREM

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
o? =Var[>. X, and s < o. Then:

n 2
Pr(ZX,u 250) < 2exp <54>

i=1
Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.

N(0,0?) has density p(x) = \/2;7 e 27, 3

GAUSSIAN TAILS

2

N(0,0°) has density p(x) = = - e .

Exercise: Using this can show that for X ~ A/(0, o?): for any s > 0,
52
Pr(X| >s-0) <0(1)-e" 7.
Essentially the same bound that Bernstein’s inequality gives!

Central Limit Theorem Interpretation: Bernstein's inequality gives a
quantitative version of the CLT. The distribution of the sum of
bounded independent random variables can be upper bounded with
a Gaussian (normal) distribution.

CENTRAL LIMIT THEOREM

Stronger Central Limit Theorem: The distribution of the sum of
n bounded independent random variables converges to a
Gaussian (normal) distribution as n goes to infinity.

0 X
39 42 45 48 51 54 57 60

Means

- Why is the Gaussian distribution is so important in statistics,
science, ML, etc.?

- Many random variables can be approximated as the sum of
a large number of small and roughly independent random
effects. Thus, their distribution looks Gaussian by CLT.

THE CHERNOFF BOUND

A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent
random variables Xi,...,X, taking values in {0,1}. Let u =

E[>",X]. Forany s >0
3
> <2 - .
—6”> = exD(2+5)

Pr (
As § gets larger and larger, the bound falls of exponentially fast.

n
in —
=1

\.

RETURN TO RANDOM HASHING

128-bit IP addresses Hash Table

-1
o mmsm A\l
>
=
5
\ C
o

h(_t6ss26164) 1590

172.16.254.1

R WN R

192.168.134

16.58.26.164

We hash m values x1, ..., Xn using a random hash function into
a table with n = m entries.

- le, forallj € [m] and i € [n], Pr(h(x) = i) = & and hash
values are chosen independently.

What will be the maximum number of items hashed into the

same location?

MAXIMUM LOAD IN RANDOMIZED HASHING

Let S; be the number of items hashed into position i and S;; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

m
1
E[S] =) E[Sij]=m- —=1=p
=

By the Chernoff Bound: for any 6 > 0,

n 52
ZS,-J—1 >0-u | <2exp (—2+5)

i=1
m: total number of items hashed and size of hash table. xq,. .., xm: the items.
h: random hash function mapping x1, . . ., Xm — [m].

Pr(5i21+5)§Pr<

MAXIMUM LOAD IN RANDOMIZED HASHING
52
> <2 — .
20 s eXp< 2+5)

(20 logm)?
2+20logm

n
> s

Pr(S; >1+9) < Pr<
i=1

Set § = 20logm. Gives:

Pr(S; > 20logm +1) < 2exp (—) < exp(—18logm) < %

Apply Union Bound:

m
Pr(maxS; > 20logm + 1) = Pr <U(S,- >20logm+1)
ie[m]

i=1

N———

m
2
gZPr(s,zzologmH)gm-W:
i=1

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 6: any value > 0.

MAXIMUM LOAD IN RANDOMIZED HASHING

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(logm) with very
high probability.

- So, even with a simple linked list to store the items in each
bucket, worst case query time is O(log m).

- Using Chebyshev's inequality could only show the maximum
load is bounded by O(v/m) with good probability (good
exercise).

- The Chebyshev bound holds even with a pairwise
independent hash function. The stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(log m).

Questions on Exponential Concentration Bounds?

This concludes the probability foundations part of the course -
on to algorithms.

1

APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

- Allow small probability § > 0 of false positives. l.e, for any x,

Pr(query(x) =1and x ¢ S) <.

Solution: Bloom filters (repeated random hashing). Will use
much less space than a hash table.

BLOOM FILTERS

Chose k independent random hash functions hs, ..., h, mapping the
universe of elements U — [m].

+ Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[hy(x)] = ... = Alhr(X)] :=1.
= query(x): return 1only if A[h1(X)] = ... = A[hp(x)] = 1.

Insertions

m bit array A| 0 0o o0 0 0|0 0 0| o0 0 | mbitarray A] 0 0 0

Queries:

No false negatives. False positives more likely with more insertions. 13

APPLICATIONS: CACHING

Akamai (Boston-based company serving 15 — 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ — pages
only visited once fill over 75% of cache.

8000

6000 7

4000 La UL A

2000 4— Bloom filter ——p

0 turned on

17-Feb 27-feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date

Disk writes per

- When url x comes in, if query(x) =1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

- False positive: A new url (possible one-hit-wonder) is cached. If
the bloom filter has a false positive rate of § = .05, the number of
cached one-hit-wonders will be reduced by at least 95%.

14

APPLICATIONS: DATABASES

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

Movies

5 1|4

Users

1 2

* When a new rating is inserted for (usery, movie,), add
(usery, moviey) to a bloom filter.

- Before reading (usery, movie,) (possibly requiring an out of
memory access), check the bloom filter, which is stored in memory.

- False positive: A read is made to a possibly empty cell. A§ = .05

false positive rate gives a 95% reduction in these empty reads. 15

APPLICATIONS: DATABASES

Bloom filters are used by Oracle and other database
companies to speed up database joins.

INNER JOIN
Orders

100 1 2016-10-19 15:21:27
200 5 2016-10-20 15:21:27
300 2 2016-10-21 15:21:27

INNER JOIN on
Customerld Column

RESULT

Robert 100 i 2016-10-19 15:21:27
2 Peter 300 2 2016-10-2115:21:27

- Matches up a key in column A of one table to a key in column
B of another, and merges corresponding information.

- A bloom filter can be used to quickly eliminate entries that
appear in A but not in B.

- A false positive rate of § means that a 1 — ¢ fraction of these
entries can be eliminated in the initial bloom filter check. 16

MORE APPLICATIONS

- Recommendation systems (Netflix, Youtube, Tinder, etc.) use
bloom filters to prevent showing users the same
recommendations twice.

- Spam/Fraud Detection:

- Bit.ly and Google Chrome use bloom filters to quickly check if a
url maps to a flagged site and prevent a user from following it.

- Can be used to detect repeat clicks on the same ad from a
single IP-address, which may be the result of fraud.

- Digital Currency: Some Bitcoin clients use bloom filters to
quickly pare down the full transaction log to transactions
involving bitcoin addresses that are relevant to them (SPV:
simplified payment verification).

17

ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(R). How does the false positive rate 6 depend on m,
kR, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the it
bit of the array A is still 0? n x k total hashes must not hit bit /.

Pr(A[l] = 0) = Pr (ha(xa) £ i ... O hy(xe) # i
Nhi(Q) £ ... Nhe(o) £in...)
= Pr(hi(x7) # 1) x ... x Pr(hu(xy) # i) x Pr(hq(x2) #1)...

k-n events each occuring with probability 1—1/m

(-3

ANALYSIS

Step 1: What is the probability that after inserting n elements, the /™"
bit of the array A is still 0?

Pr(A[i] = 0) = <1 - 1)m

m
Step 2: What is the probability that querying a new item w gives a
false positive?

Pr(Alhy(w)] = ... = Alhp(w)] = 1)
Pr(Alhi(w)] = 1) x ... x Pr(A[hg(w)] = 1)

N
= (1 - e‘%) Actually Incorrect! Dependent events.

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hy, ... hg: hash functions, A: bit array, §: false positive rate. 19

CORRECT ANALYSIS SKETCH

Step 1: To avoid dependence issues, condition on the event that the
A has t zeros in it after n insertions, for some t < m. For a

non-inserted element w, after conditioning on this event we
correctly have:

Pr(A[hi(w)] = ... = Alhg(w)] = 1)
= Pr(A[h(w)] = 1) x ... x Pr(A[h(w)] = 1).
l.e., the events Alhy(w)] = 1,..., A[hg(w)] = 1 are independent
conditioned on the number of bits set in A. Why?
- Conditioned on this event, for any j, since h; is a fully random hash
function, Pr(A[hj(w)] = 1) = L.
- Thus conditioned on this event, the false positive rate is (1 — %)h

+ It remains to show that L ~ e~ with high probability. We already
have that E[L] = 1 S Pr(A[] = 0) ~ e~ .
20

CORRECT ANALYSIS SKETCH

Need to show that the number of zeros t in A after n insertions
is bounded by O (e—%”) with high probability.

Can apply Theorem 2 of: http://cglab.ca/~morin/
publications/ds/bloom-submitted.pdf

21

http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf
http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf

