COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2020. Lecture 5

LOGISTICS

- Problem Set 1 is due this Friday, 9/11 at 8pm in Gradescope.
- If you can, we encourage you to make your questions public on Piazza.

Quiz 2:

- · Class Pace: 48% just right, 42% a bit too fast, 5% a bit too slow, 5% way too fast.
- I receive 20 download requests per day and serve each in within 15 seconds with probability 99%. Upper bound the probability I *fail to serve at least one request*.

LAST TIME

Last Class: Concentration bounds beyond Markov's inequality

- · Chebyshev's inequality and the law of large numbers.
- Exponential concentration bounds from higher moments.
- · Bernstein's Inequality

This Time:

• Finish up exponential concentration bounds and the central limit theorem.

INTERPRETATION AS A CENTRAL LIMIT THEOREM

Bernstein Inequality (Simplified): Consider independent random variables X_1, \ldots, X_n falling in [-1,1]. Let $\mu = \mathbb{E}[\sum X_i]$, $\sigma^2 = \text{Var}[\sum X_i]$, and $s \leq \sigma$. Then:

$$\Pr\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i} - \mu\right| \geq s\sigma\right) \leq 2\exp\left(-\frac{s^{2}}{4}\right).$$

Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.

$$\mathcal{N}(0, \sigma^2)$$
 has density $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{x^2}{2\sigma^2}}$.

$$\mathcal{N}(0, \sigma^2)$$
 has density $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{x^2}{2\sigma^2}}$.

Exercise: Using this can show that for $X \sim \mathcal{N}(0, \sigma^2)$: for any $s \geq 0$,

$$\Pr(|\mathbf{X}| \geq s \cdot \sigma) \leq O(1) \cdot e^{-\frac{s^2}{2}}.$$

Essentially the same bound that Bernstein's inequality gives!

Central Limit Theorem Interpretation: Bernstein's inequality gives a quantitative version of the CLT. The distribution of the sum of *bounded* independent random variables can be upper bounded with a Gaussian (normal) distribution.

CENTRAL LIMIT THEOREM

Stronger Central Limit Theorem: The distribution of the sum of *n bounded* independent random variables converges to a Gaussian (normal) distribution as *n* goes to infinity.

- Why is the Gaussian distribution is so important in statistics, science, ML, etc.?
- Many random variables can be approximated as the sum of a large number of small and roughly independent random effects. Thus, their distribution looks Gaussian by CLT.

A useful variation of the Bernstein inequality for binary (indicator) random variables is:

Chernoff Bound (simplified version): Consider independent random variables $\mathbf{X}_1,\ldots,\mathbf{X}_n$ taking values in $\{0,1\}$. Let $\mu=\mathbb{E}[\sum_{i=1}^n\mathbf{X}_i]$. For any $\delta\geq 0$

$$\Pr\left(\left|\sum_{i=1}^{n} X_{i} - \mu\right| \geq \delta \mu\right) \leq 2 \exp\left(-\frac{\delta^{2} \mu}{2 + \delta}\right).$$

As δ gets larger and larger, the bound falls of exponentially fast.

RETURN TO RANDOM HASHING

We hash m values x_1, \ldots, x_m using a random hash function into a table with n = m entries.

• I.e., for all $j \in [m]$ and $i \in [n]$, $\Pr(\mathbf{h}(x) = i) = \frac{1}{m}$ and hash values are chosen independently.

What will be the maximum number of items hashed into the same location?

MAXIMUM LOAD IN RANDOMIZED HASHING

Let S_i be the number of items hashed into position i and $S_{i,j}$ be 1 if x_j is hashed into bucket i ($h(x_i) = i$) and 0 otherwise.

$$\mathbb{E}[S_i] = \sum_{j=1}^m \mathbb{E}[S_{i,j}] = m \cdot \frac{1}{m} = 1 = \mu.$$

By the Chernoff Bound: for any $\delta \geq 0$,

$$\Pr(\mathbf{S}_i \ge 1 + \delta) \le \Pr\left(\left|\sum_{i=1}^n \mathbf{S}_{i,j} - 1\right| \ge \delta \cdot \mu\right) \le 2 \exp\left(-\frac{\delta^2}{2 + \delta}\right)$$

m: total number of items hashed and size of hash table. x_1, \ldots, x_m : the items. h: random hash function mapping $x_1, \ldots, x_m \to [m]$.

MAXIMUM LOAD IN RANDOMIZED HASHING

$$\Pr(\mathbf{S}_i \ge 1 + \delta) \le \Pr\left(\left|\sum_{i=1}^n \mathbf{S}_{i,j} - 1\right| \ge \delta\right) \le 2 \exp\left(-\frac{\delta^2}{2 + \delta}\right).$$

Set $\delta = 20 \log m$. Gives:

$$\Pr(\mathbf{S}_i \ge 20 \log m + 1) \le 2 \exp\left(-\frac{(20 \log m)^2}{2 + 20 \log m}\right) \le \exp(-18 \log m) \le \frac{2}{m^{18}}.$$

Apply Union Bound:

$$\Pr(\max_{i \in [m]} \mathbf{S}_i \ge 20 \log m + 1) = \Pr\left(\bigcup_{i=1}^m (\mathbf{S}_i \ge 20 \log m + 1)\right)$$

$$\le \sum_{i=1}^m \Pr(\mathbf{S}_i \ge 20 \log m + 1) \le m \cdot \frac{2}{m^{18}} = \frac{2}{m^{17}}.$$

m: total number of items hashed and size of hash table. S_i : number of items hashed to bucket i. $S_{i,j}$: indicator if x_j is hashed to bucket i. δ : any value ≥ 0 .

Upshot: If we randomly hash m items into a hash table with m entries the maximum load per bucket is $O(\log m)$ with very high probability.

- So, even with a simple linked list to store the items in each bucket, worst case query time is $O(\log m)$.
- · Using Chebyshev's inequality could only show the maximum load is bounded by $O(\sqrt{m})$ with good probability (good exercise).
- The Chebyshev bound holds even with a pairwise independent hash function. The stronger Chernoff-based bound can be shown to hold with a k-wise independent hash function for $k = O(\log m)$.

Questions on Exponential Concentration Bounds?

This concludes the probability foundations part of the course – on to algorithms.

Want to store a set *S* of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to check if x is in the set. Both in O(1) time. What data structure solves this problem?

· Allow small probability $\delta > 0$ of false positives. I.e., for any x,

$$\Pr(query(x) = 1 \text{ and } x \notin S) \leq \delta.$$

Solution: Bloom filters (repeated random hashing). Will use much less space than a hash table.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k$ mapping the universe of elements $U \to [m]$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

No false negatives. False positives more likely with more insertions.

APPLICATIONS: CACHING

Akamai (Boston-based company serving 15 — 30% of all web traffic) applies bloom filters to prevent caching of 'one-hit-wonders' – pages only visited once fill over 75% of cache.

- When url x comes in, if query(x) = 1, cache the page at x. If not, run insert(x) so that if it comes in again, it will be cached.
- False positive: A new url (possible one-hit-wonder) is cached. If the bloom filter has a false positive rate of $\delta=.05$, the number of cached one-hit-wonders will be reduced by at least 95%.

APPLICATIONS: DATABASES

Distributed database systems, including Google Bigtable, Apache HBase, Apache Cassandra, and PostgreSQL use bloom filters to prevent expensive lookups of non-existent data.

	Movies								
	5			1	4				
Users		3					5		
					4				
		5							5
	1			2					

- When a new rating is inserted for (user_x, movie_y), add (user_x, movie_y) to a bloom filter.
- Before reading (user_x, movie_y) (possibly requiring an out of memory access), check the bloom filter, which is stored in memory.
- False positive: A read is made to a possibly empty cell. A $\delta=.05$ false positive rate gives a 95% reduction in these empty reads.

APPLICATIONS: DATABASES

Bloom filters are used by Oracle and other database companies to speed up database *joins*.

- Matches up a key in column A of one table to a key in column
 B of another, and merges corresponding information.
- A bloom filter can be used to quickly eliminate entries that appear in **A** but not in **B**.
- A false positive rate of δ means that a 1 δ fraction of these entries can be eliminated in the initial bloom filter check.

MORE APPLICATIONS

- Recommendation systems (Netflix, Youtube, Tinder, etc.) use bloom filters to prevent showing users the same recommendations twice.
- · Spam/Fraud Detection:
 - Bit.ly and Google Chrome use bloom filters to quickly check if a url maps to a flagged site and prevent a user from following it.
 - Can be used to detect repeat clicks on the same ad from a single IP-address, which may be the result of fraud.
- **Digital Currency:** Some Bitcoin clients use bloom filters to quickly pare down the full transaction log to transactions involving bitcoin addresses that are relevant to them (SPV: simplified payment verification).

For a bloom filter with m bits and k hash functions, the insertion and query time is O(k). How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0? $n \times k$ total hashes must not hit bit i.

$$\Pr(A[i] = 0) = \Pr\left(h_1(x_1) \neq i \cap \ldots \cap h_k(x_k) \neq i \\ \qquad \cap h_1(x_2) \neq i \ldots \cap h_k(x_2) \neq i \cap \ldots\right)$$

$$= \underbrace{\Pr\left(h_1(x_1) \neq i\right) \times \ldots \times \Pr\left(h_k(x_1) \neq i\right) \times \Pr\left(h_1(x_2) \neq i\right) \ldots}_{k \cdot n \text{ events each occurring with probability } 1 - 1/m}$$

$$= \left(1 - \frac{1}{m}\right)^{kn}$$

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

Step 2: What is the probability that querying a new item w gives a false positive?

$$\begin{split} \Pr\left(A[\mathbf{h}_1(w)] = \ldots &= A[\mathbf{h}_k(w)] = 1\right) \\ &= \Pr(A[\mathbf{h}_1(w)] = 1) \times \ldots \times \Pr(A[\mathbf{h}_k(w)] = 1) \\ &= \left(1 - e^{-\frac{kn}{m}}\right)^k \quad \text{Actually Incorrect! Dependent events.} \end{split}$$

n: total number items in filter, m: number of bits in filter, k: number of random hash functions, $h_1, \ldots h_k$: hash functions, A: bit array, δ : false positive rate.

Step 1: To avoid dependence issues, condition on the event that the A has t zeros in it after n insertions, for some $t \le m$. For a non-inserted element w, after conditioning on this event we correctly have:

$$Pr(A[\mathbf{h}_1(w)] = \dots = A[\mathbf{h}_k(w)] = 1)$$

= $Pr(A[\mathbf{h}_1(w)] = 1) \times \dots \times Pr(A[\mathbf{h}_k(w)] = 1).$

I.e., the events $A[\mathbf{h}_1(w)] = 1,..., A[\mathbf{h}_k(w)] = 1$ are independent conditioned on the number of bits set in A. Why?

- Conditioned on this event, for any j, since \mathbf{h}_j is a fully random hash function, $\Pr(A[\mathbf{h}_j(w)] = 1) = \frac{t}{m}$.
- Thus conditioned on this event, the false positive rate is $(1 \frac{t}{m})^k$.
- It remains to show that $\frac{t}{m} \approx e^{-\frac{kn}{m}}$ with high probability. We already have that $\mathbb{E}[\frac{t}{m}] = \frac{1}{m} \sum_{i=1}^{m} \Pr(A[i] = 0) \approx e^{-\frac{kn}{m}}$.

CORRECT ANALYSIS SKETCH

Need to show that the number of zeros t in A after n insertions is bounded by $O\left(e^{-\frac{kn}{m}}\right)$ with high probability.

Can apply Theorem 2 of: http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf