COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Spring 2020.

Lecture 4

LOGISTICS

- Week 2 quiz will be released this afternoon and due Monday at 8pm.
- Problem Set 1 is due next Friday, 9/11 at 8pm.

Last Class:

- 2-Level Hashing Analysis (linearity of expectation and Markov's inequality)
- · 2-universal and pairwise independent hash functions

This Time:

- · Random hashing for load balancing. Motivating:
 - Stronger concentration inequalities: Chebyshev's inequality, exponential tail bounds, and their connections to the law of large numbers and central limit theorem.
 - · The union bound.

RANDOMIZED LOAD BALANCING

Randomized Load Balancing:

- n requests randomly assigned to k servers.
- Expected load on server *i* is $\mathbb{E}[\mathbf{R}_i] = \frac{n}{k}$.
- By Markov's inequality, if we provision each server to handle twice this expected load (so ²ⁿ/_k requests), it will be overloaded with probability ≤ 1/2.

CHEBYSHEV'S INEQUALITY

With a very simple twist Markov's Inequality can be made much more powerful.

For any random variable X and any value t > 0:

$$\Pr(|\mathbf{X}| \ge t) = \Pr(\mathbf{X}^2 \ge t^2).$$

 \mathbf{X}^2 is a nonnegative random variable. So can apply Markov's inequality:

Chebyshev's inequality:

$$\Pr(|X - \mathbb{E}[X] r(X|t) \ge t) = \Pr(X^2 \ge t^2) \le \frac{\mathbb{E}[X^2]}{t^2} \frac{\text{Var}[X]}{t^2}.$$

(by plugging in the random variable $X - \mathbb{E}[X]$)

CHEBYSHEV'S INEQUALITY

$$\Pr(|\mathbf{X} - \mathbb{E}[\mathbf{X}]| \ge t) \le \frac{\operatorname{Var}[\mathbf{X}]}{t^2}$$

What is the probability that **X** falls s standard deviations from it's mean?

$$\Pr(|X - \mathbb{E}[X]| \ge s \cdot \sqrt{\text{Var}[X]}) \le \frac{\text{Var}[X]}{s^2 \cdot \text{Var}[X]} = \frac{1}{s^2}.$$

Why is this so powerful?

X: any random variable, *t*, *s*: any fixed numbers.

LAW OF LARGE NUMBERS

Consider drawing independent identically distributed (i.i.d.) random variables X_1, \ldots, X_n with mean μ and variance σ^2 .

How well does the sample average $S = \frac{1}{n} \sum_{i=1}^{n} X_i$ approximate the true mean μ ?

$$Var[S] = Var\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n^{2}}\sum_{i=1}^{n}Var[X_{i}] = \frac{1}{n^{2}}\cdot n\cdot \sigma^{2} = \frac{\sigma^{2}}{n}.$$

By Chebyshev's Inequality: for any fixed value $\epsilon > 0$,

$$\Pr(|S - \mathbb{E}[S]\mu| \ge \epsilon) \le \frac{\text{Var}[S]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}.$$

Law of Large Numbers: with enough samples *n*, the sample average will always concentrate to the mean.

· Cannot show from vanilla Markov's inequality.

LOAD BALANCING VARIANCE

We can write the number of requests assigned to server i, R_i as:

$$R_i = \sum_{j=1}^n R_{i,j} \operatorname{Var}[R_i] = \sum_{j=1}^n \operatorname{Var}[R_{i,j}]$$
 (linearity of variance)

where $R_{i,j}$ is 1 if request j is assigned to server i and 0 otherwise.

$$\begin{aligned} \text{Var}[\mathbf{R}_{i,j}] &= \mathbb{E}\left[\left(\mathbf{R}_{i,j} - \mathbb{E}[\mathbf{R}_{i,j}]\right)^{2}\right] \\ &= \text{Pr}(\mathbf{R}_{i,j} = 1) \cdot \left(1 - \mathbb{E}[\mathbf{R}_{i,j}]\right)^{2} + \text{Pr}(\mathbf{R}_{i,j} = 0) \cdot \left(0 - \mathbb{E}[\mathbf{R}_{i,j}]\right)^{2} \\ &= \frac{1}{k} \cdot \left(1 - \frac{1}{k}\right)^{2} + \left(1 - \frac{1}{k}\right) \cdot \left(0 - \frac{1}{k}\right)^{2} \\ &= \frac{1}{k} - \frac{1}{k^{2}} \le \frac{1}{k} \implies \text{Var}[\mathbf{R}_{i}] \le \frac{n}{k}. \end{aligned}$$

n: total number of requests, k: number of servers randomly assigned requests, R_i : number of requests assigned to server i.

BOUNDING THE LOAD VIA CHEBYSHEVS

Letting \mathbf{R}_i be the number of requests sent to server i, $\mathbb{E}[\mathbf{R}_i] = \frac{n}{k}$ and $\text{Var}[\mathbf{R}_i] \leq \frac{n}{k}$.

Applying Chebyshev's:

$$\Pr\left(\mathbf{R}_i \geq \frac{2n}{k}\right) \leq \Pr\left(|\mathbf{R}_i - \mathbb{E}[\mathbf{R}_i]| \geq \frac{n}{k}\right) \leq \frac{n/k}{n^2/k^2} = \frac{k}{n}.$$

- · Overload probability is extremely small when $k \ll n!$
- · Might seem counterintuitive bound gets worse as k grows.
- When k is large, the number of requests each server sees in expectation is very small so the law of large numbers doesn't 'kick in'.

n: total number of requests, k: number of servers randomly assigned requests, \mathbf{R}_i : number of requests assigned to server i.

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}[\mathbf{R}_i] = \frac{2n}{k}$. I.e., that some server is overloaded if we give each $\frac{2n}{k}$ capacity?

$$\Pr\left(\max_{i}(\mathbf{R}_{i}) \geq \frac{2n}{k}\right) = \Pr\left(\left[\mathbf{R}_{1} \geq \frac{2n}{k}\right] \cup \left[\mathbf{R}_{2} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathbf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathbf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathbf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathbf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathbf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathbf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathbf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathbf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathbf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathbf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathbf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathbf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathbf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathbf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathbf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathbf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathbf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathbf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathbf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathbf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathbf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathbf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathbf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathbf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathbf{R}_{k} \geq \frac{2n}{k}\right]\right)$$

We want to show that $\Pr\left(\bigcup_{i=1}^{k} \left[\mathbf{R}_{i} \geq \frac{2n}{k}\right]\right)$ is small.

How do we do this? Note that $\mathbf{R}_1, \dots, \mathbf{R}_k$ are correlated in a somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests, \mathbf{R}_i : number of requests assigned to server i. $\mathbb{E}[\mathbf{R}_i] = \frac{n}{k}$. $\mathrm{Var}[\mathbf{R}_i] = \frac{n}{k}$.

THE UNION BOUND

Union Bound: For any random events $A_1, A_2, ..., A_k$,

$$\Pr(A_1 \cup A_2 \cup \ldots \cup A_k) \leq \Pr(A_1) + \Pr(A_2) + \ldots + \Pr(A_k).$$

When is the union bound tight? When $A_1, ..., A_k$ are all disjoint.

On the first problem set, you will prove the union bound, as a consequence of Markov's inquality.

APPLYING THE UNION BOUND

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}[\mathbf{R}_i] = \frac{2n}{k}$. I.e., that some server is overloaded if we give each $\frac{2n}{k}$ capacity?

$$\Pr\left(\max_{i}(\mathbf{R}_{i}) \geq \frac{2n}{k}\right) = \Pr\left(\bigcup_{i=1}^{k} \left[\mathbf{R}_{i} \geq \frac{2n}{k}\right]\right)$$

$$\leq \sum_{i=1}^{k} \Pr\left(\left[\mathbf{R}_{i} \geq \frac{2n}{k}\right]\right) \qquad \text{(Union Bound)}$$

$$\leq \sum_{i=1}^{k} \frac{k}{n} = \frac{k^{2}}{n} \qquad \text{(Bound from Chebyshev's)}$$

As long as $k \le O(\sqrt{n})$, with good probability, the maximum server load will be small (compared to the expected load).

n: total number of requests, k: number of servers randomly assigned requests, R_i : number of requests assigned to server i. $\mathbb{E}[R_i] = \frac{n}{k}$. $Var[R_i] = \frac{n}{k}$.

ANOTHER VIEW ON THIS PROBLEM

The number of servers must be small compared to the number of requests $(k = O(\sqrt{n}))$ for the maximum load to be bounded in comparison to the expected load with good probability.

- There are many requests routed to a relatively small number of servers so the load seen on each server is close to what is expected via law of large numbers.
- A Useful Exercise: Given n requests, and assuming all servers have fixed capacity C, how many servers should you provision so that with probability ≥ 99/100 no server is assigned more than C requests?

n: total number of requests, *k*: number of servers randomly assigned requests.

Questions on union bound, Chebyshev's inequality, random hashing?

FLIPPING COINS

We flip n=100 independent coins, each are heads with probability 1/2 and tails with probability 1/2. Let **H** be the number of heads.

$$\mathbb{E}[\mathbf{H}] = \frac{n}{2} = 50 \text{ and } Var[\mathbf{H}] = \frac{n}{4} = 25 \rightarrow s.d. = 5$$

Markov's:	Chebyshev's:	In Reality:
$Pr(H \ge 60) \le .833$	$Pr(H \ge 60) \le .25$	$Pr(H \ge 60) = 0.0284$
$Pr(H \ge 70) \le .714$	$Pr(H \ge 70) \le .0625$	$Pr(H \ge 70) = .000039$
$\Pr(\mathbf{H} \ge 80) \le .625$	$Pr(H \ge 80) \le .0278$	$Pr(H \ge 80) < 10^{-9}$

H has a simple Binomial distribution, so can compute these probabilities exactly.

TIGHTER CONCENTRATION BOUNDS

To be fair.... Markov and Chebyshev's inequalities apply much more generally than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very general distributions?

- · Markov's: $Pr(X \ge t) \le \frac{\mathbb{E}[X]}{t}$. First Moment.
- Chebyshev's: $\Pr(|\mathbf{X} \mathbb{E}[\mathbf{X}]| \ge t) = \Pr(|\mathbf{X} \mathbb{E}[\mathbf{X}]|^2 \ge t^2) \le \frac{\text{Var}[\mathbf{X}]}{t^2}$. Second Moment.
- · What if we just apply Markov's inequality to even higher moments?

Consider any random variable X:

$$\Pr(|\mathbf{X} - \mathbb{E}[\mathbf{X}]| \ge t) = \Pr\left((\mathbf{X} - \mathbb{E}[\mathbf{X}])^4 \ge t^4\right) \le \frac{\mathbb{E}\left[\left(\mathbf{X} - \mathbb{E}[\mathbf{X}]\right)^4\right]}{t^4}.$$

Application to Coin Flips: Recall: n = 100 independent fair coins, **H** is the number of heads.

· Bound the fourth moment:

$$\mathbb{E}\left[\left(\mathbf{H} - \mathbb{E}[\mathbf{H}]\right)^4\right] = \mathbb{E}\left[\left(\sum_{i=1}^{100} \mathbf{H}_i - 50\right)^4\right] = \sum_{i,j,k,\ell} c_{ijk\ell} \mathbb{E}[\mathbf{H}_i \mathbf{H}_j \mathbf{H}_k \mathbf{H}_\ell] = 1862.5$$

where $H_i = 1$ if coin flip i is heads and 0 otherwise. Then apply some messy calculations...

• Apply Fourth Moment Bound: $\Pr(|\mathbf{H} - \mathbb{E}[\mathbf{H}]| \ge t) \le \frac{1862.5}{t^4}$.

TIGHTER BOUNDS

Chebyshev's:	4 th Moment:	In Reality:
$Pr(H \ge 60) \le .25$	$Pr(H \ge 60) \le .186$	$Pr(H \ge 60) = 0.0284$
$Pr(H \ge 70) \le .0625$	$Pr(H \ge 70) \le .0116$	$Pr(H \ge 70) = .000039$
$Pr(H \ge 80) \le .04$	$Pr(H \ge 80) \le .0023$	$Pr(H \ge 80) < 10^{-9}$

Can we just keep applying Markov's inequality to higher and higher moments and getting tighter bounds?

- · Yes! To a point.
- In fact don't need to just apply Markov's to $|\mathbf{X} \mathbb{E}[\mathbf{X}]|^k$ for some k. Can apply to any monotonic function $f(|\mathbf{X} \mathbb{E}[\mathbf{X}]|)$.
- · Why monotonic? $\Pr(|\mathbf{X} \mathbb{E}[\mathbf{X}]| > t) = \Pr(f(|\mathbf{X} \mathbb{E}[\mathbf{X}]|) > f(t)).$

H: total number heads in 100 random coin flips. $\mathbb{E}[\mathbf{H}] = 50$.

Moment Generating Function: Consider for any t > 0:

$$M_t(X) = e^{t \cdot (X - \mathbb{E}[X])} = \sum_{k=0}^{\infty} \frac{t^k (X - \mathbb{E}[X])^k}{k!}$$

- $M_t(X)$ is monotonic for any t > 0.
- Weighted sum of all moments, with t controlling how slowly the weights fall off (larger t = slower falloff).
- Choosing t appropriately lets one prove a number of very powerful exponential concentration bounds (exponential tail bounds).
- Chernoff bound, Bernstein inequalities, Hoeffding's inequality, Azuma's inequality, Berry-Esseen theorem, etc.
- · We will not cover the proofs in the this class.

Bernstein Inequality: Consider independent random variables

$$X_1, \dots, X_n$$
 all falling in $[-M, M][-1,1]$. Let $\mu = \mathbb{E}[\sum_{i=1}^n X_i]$ and $\sigma^2 = \text{Var}[\sum_{i=1}^n X_i] = \sum_{i=1}^n \text{Var}[X_i]$. For any $t \ge 0$ s ≥ 0 :

$$\Pr\left(\left|\sum_{i=1}^{n} X_{i} - \mu\right| \geq t\right) \leq 2 \exp\left(-\frac{t^{2}}{2\sigma^{2} + \frac{4}{3}Mt}\right).$$

$$\Pr\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i} - \mu\right| \geq s\sigma\right) \leq 2\exp\left(-\frac{S^{2}}{4}\right).$$

Assume that M = 1 and plug in $t = s \cdot \sigma$ for $s \le \sigma$.

Compare to Chebyshev's: $\Pr\left(\left|\sum_{i=1}^{n} X_i - \mu\right| \ge s\sigma\right) \le \frac{1}{s^2}$.

· An exponentially stronger dependence on s!

COMPARISION TO CHEBYSHEV'S

Consider again bounding the number of heads ${\bf H}$ in n=100 independent coin flips.

Chebyshev's:	Bernstein:	In Reality:
$Pr(H \ge 60) \le .25$	$Pr(H \ge 60) \le .15$	$Pr(H \ge 60) = 0.0284$
$Pr(H \ge 70) \le .0625$	$Pr(H \ge 70) \le .00086$	$Pr(H \ge 70) = .000039$
$Pr(H \ge 80) \le .04$	$Pr(H \ge 80) \le 3^{-7}$	$Pr(H \ge 80) < 10^{-9}$

Getting much closer to the true probability.

H: total number heads in 100 random coin flips. $\mathbb{E}[\mathbf{H}] = 50$.