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LOGISTICS

- Week 2 quiz will be released this afternoon and due Monday
at 8pm.

- Problem Set 1is due next Friday, 9/11 at 8pm.



LAST TIME

Last Class:

- 2-Level Hashing Analysis (linearity of expectation and
Markov's inequality)

- 2-universal and pairwise independent hash functions

This Time:

- Random hashing for load balancing. Motivating:

- Stronger concentration inequalities: Chebyshev's inequality,
exponential tail bounds, and their connections to the law of
large numbers and central limit theorem.

- The union bound.



RANDOMIZED LOAD BALANCING

Randomized Load Balancing:

s @
[
/TN

Server 1 Server 2 Server k

- n requests randomly assigned to k servers.

- Expected load on server i is E[R]] = 7.

- By Markov's inequality, if we provision each server to handle
twice this expected load (so %” requests), it will be
overloaded with probability <1/2.



CHEBYSHEV'S INEQUALITY

With a very simple twist Markov’'s Inequality can be made
much more powerful.

For any random variable X and any value t > 0:
Pr(|X| > t) = Pr(X?> > t%).

X? is a nonnegative random variable. So can apply Markov's
inequality:
Chebyshev's inequality:

E[X?] var(X]

PH(X - EDRI(XZ €) = PrOC 2 ) < =2

(by plugging in the random variable X — E[X])



CHEBYSHEV'S INEQUALITY

Var[X
Pr(X—E[X]| > t) < t2[ ]
What is the probability that X falls s standard deviations from

it's mean?

Pr(IX — E[X]| > s - \/Var[X]) < m _ Siz

Why is this so powerful?

X: any random variable, t, s: any fixed numbers.




LAW OF LARGE NUMBERS

Consider drawing independent identically distributed (i.i.d.)
random variables X4, ..., X, with mean x and variance 2.

How well does the sample average S = 1 37 | X; approximate
the true mean u?

1 o 1 o 1 , o
Var[S] = Var [nlz;x,-] :nz;Var[Xi] = 5not=—

By Chebyshev's Inequality: for any fixed value € > 0,
_ Varls] _ a?

= &2  pe
Law of Large Numbers: with enough samples n, the sample

average will always concentrate to the mean.

Pr(|S — E[S]u| = €)

- Cannot show from vanilla Markov's inequality.



LOAD BALANCING VARIANCE

We can write the number of requests assigned to server i, R; as:
n

Ri=> Ry (linearity of variance)
j=1

where R;; is 1if request j is assigned to server i and 0 otherwise.
2
Var[R,-’,] =K |:(R,"}' — E[R,’J]) }

—Pr(Ri; =1)- (1= E[R])" + Pr(R;; = 0) - (0 — E[R;;])’

1 % 1 1\°
w'(“Q*(“O'(‘)‘k)
I

kR R~k '

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.




BOUNDING THE LOAD VIA CHEBYSHEVS

Letting R; be the number of requests sent to server i, E[R]] = 7
and Var[R;] < ¢.

Applying Chebyshev’s:

2n n n/k R
Pr <R, > k) < Pr<|R, E[R]| > /?) S

- Overload probability is extremely small when k < n!

- Might seem counterintuitive — bound gets worse as k grows.

- When k is large, the number of requests each server sees in
expectation is very small so the law of large numbers
doesn’t ‘kick in’.

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.




MAXIMUM SERVER LOAD

What is the probability that the exceeds
2-E[R]] = 2?” l.e., that some server is overloaded if we give
each 2! capacity?

2n 2n 2n 2n
Pr (mlax(R,») > fe) =Pr ({R1 > fe} U [Rz > I?] Uu...u [Rk > ’?D =P

We want to show that Pr (UL R > %”]) is small.

How do we do this? Note that Ry, ..., R, are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[R;] = . Var[R] = §.




THE UNION BOUND

Union Bound: For any random events Ay, Ay, ..., A,

Pr(AfUA U...UAg) < Pr(Ar) +Pr(A2) + ...+ Pr(Ag).

When Ay, ..., A, are all disjoint.

On the first problem set, you will prove the union bound, as a
consequence of Markov's inquality. 10



APPLYING THE UNION BOUND

What is the probability that the exceeds
2-E[R] = . l.e, that some server is overloaded if we give each 2
capacity?

Pr <m?X(Ri) 2 2:) =Pr (0 {Ri - 2’:D

=1
< Z Pr <[R > 2”]) (Union Bound)
= . = I?
< Z k_ (Bound from Chebyshev's)
<25

As long as k < O(y/n), with good probability, the maximum server
load will be small (compared to the expected load).

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[R;] = 2. Var[R]] = 3.

1




ANOTHER VIEW ON THIS PROBLEM

The number of servers must be small compared to the number
of requests (k = O(+/n)) for the maximum load to be bounded
in comparison to the expected load with good probability.

- There are many requests routed to a relatively small number
of servers so the load seen on each server is close to what is
expected via law of large numbers.

- A Useful Exercise: Given n requests, and assuming all
servers have fixed capacity C, how many servers should you
provision so that with probability > 99/100 no server is
assigned more than C requests?

n: total number of requests, k: number of servers randomly assigned requests. ]




Questions on union bound, Chebyshev's inequality,
random hashing?

13



FLIPPING COINS

We flip n = 100 independent coins, each are heads with
probability 1/2 and tails with probability 1/2. Let H be the
number of heads.

n n
E[H] = 5= 50 and Var[H] = P 25 —=+s.d. =5

Markov’s: Chebyshev’s: In Reality:

Pr(H>60) < .833  Pr(H > 60) < .25 Pr(H > 60) = 0.0284
Pr(H>70)< 714  Pr(H>70)<.0625  Pr(H > 70) =.000039
Pr(H >80) < .625  Pr(H > 80) < .0278 Pr(H > 80) < 10~°

H has a simple Binomial distribution, so can compute these
probabilities exactly.
14



TIGHTER CONCENTRATION BOUNDS

To be fair.... Markov and Chebyshev's inequalities apply much more
generally than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very
general distributions?

. First Moment.

* Markov's: Pr(X > t) < @

- Chebyshev's: Pr(|X — E[X]| > t) = Pr(|X — E[X]|? > ?) < Vatrzlxl_
Second Moment.

- What if we just apply Markov's inequality to even higher moments?

15



A FOURTH MOMENT BOUND

Consider any random variable X:

E |(X— EX])"]

Pr(IX — E[X]| > t) = Pr ((x CEX)¢ > t‘*) < .

Application to Coin Flips: Recall: n = 100 independent fair coins, H is
the number of heads.

+ Bound the fourth moment:
100
[(H E[H]) } (ZH —50) = 3 CjuE[HHHH] = 1862.5
Y
where H; = 1if coin flip i is heads and 0 otherwise. Then apply
some messy calculations...
* Apply Fourth Moment Bound: Pr(JH — E[H]| > t) < 18922

16



TIGHTER BOUNDS

.

Chebyshev's: 41 Moment: In Reality:
Pr(H > 60) < .25 Pr(H > 60) < .186 Pr(H > 60) = 0.0284
Pr(H > 70) < .0625 Pr(H > 70) < .0116 Pr(H > 70) = .000039
Pr(H > 80) < .04 Pr(H > 80) < .0023 Pr(H > 80) < 10~°

J

Can we just keep applying Markov's inequality to higher and
higher moments and getting tighter bounds?

Yes! To a point.

In fact — don't need to just apply Markov's to |X — E[X]]'? for

some k. Can apply to any monotonic function f(|X — E[X]|).
PrX—E[X]| > t) = Pr(f(IX—E[X]|) > f(t))-

H: total number heads in 100 random coin flips. E[H] = 50.

17



EXPONENTIAL CONCENTRATION BOUNDS

Moment Generating Function: Consider for any t > 0:

Mi(K) = 0P — 3 t’e(x—rflxl)’?

k=0

- M¢(X) is monotonic for any t > 0.

- Weighted sum of all moments, with t controlling how slowly
the weights fall off (larger t = slower falloff).

- Choosing t appropriately lets one prove a number of very
powerful exponential concentration bounds (exponential tail
bounds).

- Chernoff bound, Bernstein inequalities, Hoeffding's
inequality, Azuma'’s inequality, Berry-Esseen theorem, etc.

- We will not cover the proofs in the this class.



BERNSTEIN INEQUALITY

Bernstein Inequality: Consider independent random variables
X1, ..., Xp all falling in [-M,M][-1,1]. Let p = E[>_", X;] and 0% =
var[>>1, Xi] = S°1, Var[X;]. For any t > 0s > 0:

n
t2
3

i=1
Pr ZX —pl >so | <2exp <S> .
Il ‘ ‘ B B 4

Assume that M =1and plugint=s-o fors < o.

Compare to Chebyshev’s: Pr (|37, X; — p| > s0) < 5.

- An exponentially stronger dependence on s! 19



COMPARISION TO CHEBYSHEV'S

Consider again bounding the number of heads H in n =100
independent coin flips.

Chebyshev’s: Bernstein: In Reality:

Pr(H > 60) < .25 Pr(H > 60) < .15 Pr(H > 60) = 0.0284
Pr(H >70) < .0625  Pr(H >70) <.00086  Pr(H > 70) = .000039
Pr(H>80)< .04  Pr(H>80)<3”’ Pr(H > 80) < 10°

Getting much closer to the true probability.

H: total number heads in 100 random coin flips. E[H] = 50. ]

20



