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LOGISTICS

By Thursday:

- Sign up for Piazza.

- Sign up for Gradescope (code on class website) and fill out
the Gradescope consent poll on Piazza. Contact me via email
if you don’t consent to use Gradescope.
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First Problem Set: released Saturday, due 9/11 at 8pm in
Gradescope.

- Remember you can complete in a group of up to 3 students,
who all turn in one submission with three names on it.



WEEK 1 QUIZ

91 students completed the quizzes — make sure that if you are
enrolled you are doing the quiz each week.



WEEK 1 QUIZ

91 students completed the quizzes — make sure that if you are
enrolled you are doing the quiz each week.

Question 1: The expected number of inches of rain on Saturday is 2
and the expected number of inches on Sunday is 6. There is a 50%
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only a 25% chance of rain on Sunday. What is the expected number
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enrolled you are doing the quiz each week.

Question 1: The expected number of inches of rain on Saturday is 2
and the expected number of inches on Sunday is 6. There is a 50%
chance of rain on Saturday. If it rains on Saturday, there is a 75%
chance of rain on Sunday. If it does not rain on Saturday, there is
only a 25% chance of rain on Sunday. What is the expected number
of inches of rainfall total over the weekend?

Concerns: Probability/linear algebra background,
proofs/derivations.



LAST TIME

Last Class We Covered:

- Markov's inequality: the most fundamental concentration
bound.
- Algorithmic applications of Markov's inequality, linearity of
expectation, and indicator random variables:
- Counting collisions to estimate CAPTCHA database size.
- Counting collisions to understand the runtime of hash tables
with random hash functions.
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Last Class We Covered:

- Markov's inequality: the most fundamental concentration
bound.

- Algorithmic applications of Markov's inequality, linearity of
expectation, and indicator random variables:
- Counting collisions to estimate CAPTCHA database size.
- Counting collisions to understand the runtime of hash tables
with random hash functions.

- Collision counting is closely related to the birthday paradox.



TODAY

Today:

- Finish up random hash functions and hash tables.
- See an applications of random hashing to load balancing in

distributed systems.
- Through these applications learn about:
- Chebyshev's inequality, which strengthens Markov’s inequality.
- The union bound, for understanding the probabilities of
correlated random events.



HASH TABLES

We store m items from a large universe in a hash table with n
positions.

128-bit IP addresses Hash Table
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- Want to show that when h : U — [n] is a random hash
function, query time is O(1) with good probability.
- Equivalently: want to show that there are few collisions
between hashed items. :
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m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.
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When storing m items in a table of size n, the expected number
of pairwise collisions (two items stored in the same slots) is:

E[q] = m(r;’n_”

- For n = 4m? we have: E[C] = 771 < 1.
- By Markov's inequality there with probability at

7
least 5

0(1) query time, but we are using O(m?) space to store m
items...

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.
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- For each bucket with s; values, pick a collision free hash function
mapping [si] — [s7].



TWO LEVEL HASHING

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

random hash
function

172.16.254.1

A WON =

192.168.1.34 : collision free O(s?) space
. I'syvalues | pash function hash table

16.58.26.164

n

- For each bucket with s; values, pick a collision free hash function
mapping [s;] — [s7]
- Just Showed: A random function is collision free with probability

> % so can just generate a random hash function and check if it is
collision free.
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Query time for two level hashing is O(1): requires evaluating two
hash functions.

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. s
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Collisions again!
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Near optimal space with O(1) query time!

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.




EFFICIENTLY COMPUTABLE HASH FUNCTION

So Far: we have assumed a fully random hash function h(x)
with Prih(x) = i] = 1 fori € 1,...,n and h(x), h(y) independent
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EFFICIENTLY COMPUTABLE HASH FUNCTION

So Far: we have assumed a fully random hash function h(x)
with Prih(x) = i] = 1 fori € 1,...,n and h(x), h(y) independent
forx #£y.

- To compute a random hash function we have to store a table
of x values and their hash values. Would take at least O(m)
space and O(m) query time if we hash m values. Making our
whole quest for O(1) query time pointless!

x h(x)

X, | 45

X, 1004

X3 7107

Xm | 12
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EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

Prih(x) = h(y)] < -

.

Exercise: Rework the two level hashing proof to show that this
property is really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],
Prlh(x) = h(y)] = + (so a fully random hash function is 2-universal)

Efficient Alternative: Let p be a prime with p > |U]. Choose random
a,b € [p] with a # 0. Let:

h(x)=(ax+b mod p) mod n. »



PAIRWISE INDEPENDENCE

Another common requirement for a hash function:



PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U — [n] is pairwise independent if for all i,j € [n]:
1

Prin() = inh() =] = —.




PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U — [n] is pairwise independent if for all i,j € [n]:
. . 1
Prin(x) =inh(y) =] = -

Breakout: Which is a more stringent requirement? 2-universal or
pairwise independent?



PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U — [n] is pairwise independent if for all i,j € [n]:
. . 1
Prin(x) =inh(y) =] = -

Breakout: Which is a more stringent requirement? 2-universal or
pairwise independent?

Prih(x) = h(y)] = Z Prlh(x)=inh(y)=il=n.-—= =

=1



PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U — [n] is pairwise independent if for all i,j € [n]:
1

Prin() = inh() =] = —.

Breakout: Which is a more stringent requirement? 2-universal or
pairwise independent?

Prih(x) = h(y)] = Z Prlh(x)=inh(y)=il=n.-—= =

]
, n?2 n
=1

A closely related (ax +b) mod p construction gives pairwise
independence on top of 2-universality.



PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U — [n] is pairwise independent if for all i,j € [n]:
1

Prin() = inh() =] = —.

Breakout: Which is a more stringent requirement? 2-universal or
pairwise independent?

n
. . 1
Prih(x) = h(y)] = Z Prlh(x) =inh(y)=il=n- pril
i=1
A closely related (ax +b) mod p construction gives pairwise
independence on top of 2-universality.

Remember: A fully random hash function is both 2-universal and
pairwise independent. But it is not efficiently implementable.
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NEXT STEP

1. We'll consider an application where our toolkit of linearity of
expectation + Markov's inequality doesn’t give much.

2. Then we'll show how a simple twist on Markov's can give a
much stronger result.
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Randomized Load Balancing:

s @

l 2 R_equests

/N
B AR, .. AD

o I111] (o 1111] (o 1111

Server 1 Server 2 Server k

Simple Model: n requests randomly assigned to k servers. How
many requests must each server handle?

- Often assignment is done via a random hash function. Why?

14



WEAKNESS OF MARKOV'S

Expected Number of requests assigned to server i:
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n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.
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Expected Number of requests assigned to server i:

n n
. L on
E[R] = Z IE:[]Irequestj assigned to il = Z Pr[j assigned to i] = S
j=1 j=1
If we provision each server be able to handle
, what is the probability that a server is

overloaded?

Applying Markov's Inequality
ER] 1

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

15



WEAKNESS OF MARKOV'S

Expected Number of requests assigned to server i:

n n
. L on
E[R] = 21 IE:[]Irequestj assigned to il = 21 Pr[j assigned to i] = S
j= j=
If we provision each server be able to handle
, what is the probability that a server is

overloaded?

Applying Markov's Inequality
ER] 1

2E[R] 2
Not great..half the servers may be overloaded.

PriR; = 2E[R{]] <

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.
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