COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.
Lecture 3

LOGISTICS

By Thursday:

- Sign up for Piazza.

- Sign up for Gradescope (code on class website) and fill out
the Gradescope consent poll on Piazza. Contact me via email
if you don’t consent to use Gradescope.

LOGISTICS

By Thursday:

- Sign up for Piazza.

- Sign up for Gradescope (code on class website) and fill out
the Gradescope consent poll on Piazza. Contact me via email
if you don’t consent to use Gradescope.

First Problem Set: released Saturday, due 9/11 at 8pm in
Gradescope.

- Remember you can complete in a group of up to 3 students,
who all turn in one submission with three names on it.

WEEK 1 QUIZ

91 students completed the quizzes — make sure that if you are
enrolled you are doing the quiz each week.

WEEK 1 QUIZ

91 students completed the quizzes — make sure that if you are
enrolled you are doing the quiz each week.

Question 1: The expected number of inches of rain on Saturday is 2
and the expected number of inches on Sunday is 6. There is a 50%
chance of rain on Saturday. If it rains on Saturday, there is a 75%
chance of rain on Sunday. If it does not rain on Saturday, there is
only a 25% chance of rain on Sunday. What is the expected number
of inches of rainfall total over the weekend?

WEEK 1 QUIZ

91 students completed the quizzes — make sure that if you are
enrolled you are doing the quiz each week.

Question 1: The expected number of inches of rain on Saturday is 2
and the expected number of inches on Sunday is 6. There is a 50%
chance of rain on Saturday. If it rains on Saturday, there is a 75%
chance of rain on Sunday. If it does not rain on Saturday, there is
only a 25% chance of rain on Sunday. What is the expected number
of inches of rainfall total over the weekend?

Concerns: Probability/linear algebra background,
proofs/derivations.

LAST TIME

Last Class We Covered:

- Markov's inequality: the most fundamental concentration
bound.
- Algorithmic applications of Markov's inequality, linearity of
expectation, and indicator random variables:
- Counting collisions to estimate CAPTCHA database size.
- Counting collisions to understand the runtime of hash tables
with random hash functions.

LAST TIME

Last Class We Covered:

- Markov's inequality: the most fundamental concentration
bound.

- Algorithmic applications of Markov's inequality, linearity of
expectation, and indicator random variables:
- Counting collisions to estimate CAPTCHA database size.
- Counting collisions to understand the runtime of hash tables
with random hash functions.

- Collision counting is closely related to the birthday paradox.

TODAY

Today:

- Finish up random hash functions and hash tables.
- See an applications of random hashing to load balancing in

distributed systems.
- Through these applications learn about:
- Chebyshev's inequality, which strengthens Markov’s inequality.
- The union bound, for understanding the probabilities of
correlated random events.

HASH TABLES

We store m items from a large universe in a hash table with n
positions.

128-bit IP addresses Hash Table

=1
0 skt) *

172.16.254.1

R WN e

192.168.1.34

16.58.26.164 h(16.58.26.164)= 1590

—,

- Want to show that when h : U — [n] is a random hash
function, query time is O(1) with good probability.
- Equivalently: want to show that there are few collisions
between hashed items. :

COLLISION FREE HASHING

When storing m items in a table of size n, the expected number
of pairwise collisions (two items stored in the same slots) is:

E[q] = m(r;’n_”

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

COLLISION FREE HASHING

When storing m items in a table of size n, the expected number
of pairwise collisions (two items stored in the same slots) is:

gl = "7 =Y,

- For n = 4m? we have: E[C] = 771 < 1.
- By Markov's inequality there with probability at

7
least 5

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

COLLISION FREE HASHING

When storing m items in a table of size n, the expected number
of pairwise collisions (two items stored in the same slots) is:

E[q] = m(r;’n_”

- For n = 4m? we have: E[C] = 771 < 1.
- By Markov's inequality there with probability at

7
least 5

0(1) query time, but we are using O(m?) space to store m
items...

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

TWO LEVEL HASHING

Want to preserve O(1) query time while using O(m) space.

TWO LEVEL HASHING

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

random hash
function

172.16.254.1

A WON =

192.168.1.34 : collision free O(s?) space
. I'syvalues | pash function hash table

16.58.26.164

TWO LEVEL HASHING

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

random hash
function

172.16.254.1

A WON =

192.168.1.34 : collision free O(s?) space
. I'syvalues | pash function hash table

16.58.26.164

n

- For each bucket with s; values, pick a collision free hash function
mapping [si] — [s7].

TWO LEVEL HASHING

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

random hash
function

172.16.254.1

A WON =

192.168.1.34 : collision free O(s?) space
. I'syvalues | pash function hash table

16.58.26.164

n

- For each bucket with s; values, pick a collision free hash function
mapping [s;] — [s7]
- Just Showed: A random function is collision free with probability

> % so can just generate a random hash function and check if it is
collision free.

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. s

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. s

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: S=n+ 3", s?

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 8

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + Y[, E[s?]

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 8

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + Y., I[s7]

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 8

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y.,
2

m
ElsT]=E || Y Tngo)=i
=

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 8

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y.,
2

m
ElsT]=E || Y Tngo)=i
=

=E Z Ihx)=i - Thx)=i
kelm]

Collisions again!

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y.,
2

m
ElsT]=E || Y Tngo)=i
=

=E Z Ihe)=i * Ihx)=i | = Z E {Hh(x,):i'ﬂh(xk):i}o
Lj>kem] J,ke[m]

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 8

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y.,
2

m
ElsT]=E || Y Tngo)=i
=

=E Z Ihe)=i * Ihx)=i | = Z E {Hh(x,):i'ﬂh(xk):i}o
Lj>kem] J,ke[m]

- Forj =Kk,

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 8

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y.,
2

m
ElsT]=E || Y Tngo)=i
=

=E Z Ihe)=i * Ihx)=i | = Z E {Hh(x,):i'ﬂh(xk):i}o
Lj>kem] J,ke[m]

- Forj=~R E {]Ih(x/):/‘ :]Ih(Xh)=’} =E {(Hh(xﬂ:i)z}

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 8

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y.,
2

m
ElsT]=E || Y Tngo)=i
=

=E Z Ihe)=i * Ihx)=i | = Z E {Hh(x,):i'ﬂh(xk):i}o
Lj>kem] J,ke[m]

. 2 -
* Forj=R E []Ih(x/)z/’ :]Ih(xh):i} =E {(Hh(x,):i) } = Prh(x;) = 1]

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 8

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y.,
2

m
ElsT]=E || Y Tngo)=i
=

=E Z Ihe)=i * Ihx)=i | = Z E {Hh(x,):i'ﬂh(xk):i}o
Lj>kem] J,ke[m]

2
“ Forj=RE []Ih(x/)z/’ .]Ih(xh):i} =E {(Hh(x,):i) } = Prh(x) = 1] = +.

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 8

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y.,
2

m
ElsT]=E || Y Tngo)=i
=

=E Z Ihe)=i * Ihx)=i | = Z E {Hh(x,):i'ﬂh(xk):i}o
Lj>kem] J,ke[m]

2
“ Forj=RE []Ih(x/)z/’ .]Ih(xh):i} =E {(Hh(x,):i) } = Prh(x) = 1] = +.

- Forj #R,

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 8

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y.,
2

m
ElsT]=E || Y Tngo)=i
=

=E Z Ihe)=i * Ihx)=i | = Z E {Hh(x,):i'ﬂh(xk):i}o
Lj>kem] J,ke[m]

2
“ Forj=RE []Ih(x/)z/’ .]Ih(xh):i} =E {(Hh(x,):i) } = Prh(x) = 1] = +.

- Forj#RE []Ih(x,):‘ : Hh(x@:i]

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 8

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y.,
2

m
ElsT]=E || Y Tngo)=i
=

=E Z Ihe)=i * Ihx)=i | = Z E {Hh(x,):i'ﬂh(xk):i}o
Lj>kem] J,ke[m]

2
“ Forj=RE []Ih(x/)z/’ .]Ih(xh):i} =E {(Hh(x,):i) } = Prh(x) = 1] = +.

" Forj#RE []Ih(x,-)z/’ :]Ih(xk)ﬂ} = Pr[h() = i h(xe) = 1]

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 8

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y.,
2

m
ElsT]=E || Y Tngo)=i
=

=E Z Ihe)=i * Ihx)=i | = Z E {Hh(x,):i'ﬂh(xk):i}o
Lj>kem] J,ke[m]

2
“ Forj=RE []Ih(x/)z/’ .]Ih(xh):i} =E {(Hh(x,):i) } = Prh(x) = 1] = +.

- Forj#hk E []Ih(xj)z,» : th(xk)zi] = Pr{h(x) = inh(q) =1 = L.

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 8

SPACE USAGE

E[sf]=) E {Hh(x,):i ' Hh(xk):i]
jokelm]

: Forj =R E |:]Ih(xl):f .]Ih(Xh):i] = %

“ Forj#R E [Hh(x,):f . Hh(xk)::} = .

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i. 9

SPACE USAGE

E[sf]=) E {Hh(x,):i ' Hh(xk):i]
jokelm]

- n 2) n?

: Forj =R E |:]Ih(xl):f .]Ih(Xh):i] = %

“ Forj#R E [Hh(x,):f . Hh(xk)::} = .

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i. 9

SPACE USAGE

E[sf]=) E {Hh(x,):i ' Hh(xk):i]
jokelm]

=m W—|—2 m !
o n 2) n?

“ Forj#R E [Hh(x,):f . Hh(xk)::} = .

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i. 9

SPACE USAGE

E[sf]=) E {Hh(x,):i ' Hh(xk):i]
jokelm]

1 <m>
=m-—-4+2-)
n 2 n?

: Forj =R E |:]Ih(xl):f .]Ih(Xh):i] = %

: FO!’] * /3, E {i|1(y(r)7‘ ih()7‘} = *‘

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i. 9

SPACE USAGE

E[sf]=) E {Hh(x,):i ' Hh(xk):i]
jokelm]

' n 2) n?
m m(m-=1)

=—+
n n2

: Forj =R E |:]Ih(xl):f .]Ih(Xh):i] = %

“ Forj#R E [Hh(x,):f . Hh(xk)::} = .

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

SPACE USAGE

E[sf]=) E {Hh(x,):i ' Hh(xk):i]
jokelm]

' n 2) n?
m m(m-=1)

= —+———<2(fwesetn=m)
n n

: Forj =R E |:]Ih(xl):f .]Ih(Xh):i] = %

“ Forj#R E [Hh(x,):f . Hh(xk)::} = .

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

SPACE USAGE

E[sf]=) E {Hh(x,):i ' Hh(xk):i]
jokelm]

:m-1—|—2-(m>-1
n 2) n?
m m(m-=1)

n

+72§2(vavesetn:m.)
n

“ Forj=RE []Ih(x/):/’ :]Ih(xh):l} =1
“ Forj#R E [Hh(x,):f . Hh(xk)::} = .
Total Expected Space Usage: (if we set n = m)

E[S] = n + XH:E[S,?]

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

SPACE USAGE

E[sf]=) E {Hh(x,):i ' Hh(xk):i]
jokelm]

:m-1—|—2-(m>-1
n 2) n?
m m(m-=1)

n

+72§2(vavesetn:m.)
n

“ Forj=RE []Ih(x/):/’ :]Ih(xh):l} =1
“ Forj#R E [Hh(x,):f . Hh(xk)::} = .
Total Expected Space Usage: (if we set n = m)

n
E[S]:n+Z]E[s,2]§n+n~2:3n=3m.

i=1

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

SPACE USAGE

E[sf]=) E {Hh(x,):i ' Hh(xk):i]
jokelm]

' n 2) n?
m m(m-=1)

= —+———<2(fwesetn=m)
n n

“ Forj=RE []Ih(x/):/’ :]Ih(xh):l} =1
“ Forj#R E [Hh(x,):f . Hh(xk)::} = .
Total Expected Space Usage: (if we set n = m)

n
E[S] = n+Z]E[s,2] <n+n-2=3n=3m.
P

Near optimal space with O(1) query time!

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

EFFICIENTLY COMPUTABLE HASH FUNCTION

So Far: we have assumed a fully random hash function h(x)
with Prih(x) = i] = 1 fori € 1,...,n and h(x), h(y) independent
forx #£y.

EFFICIENTLY COMPUTABLE HASH FUNCTION

So Far: we have assumed a fully random hash function h(x)
with Prih(x) = i] = 1 fori € 1,...,n and h(x), h(y) independent
forx #£y.

- To compute a random hash function we have to store a table
of x values and their hash values. Would take at least O(m)
space and O(m) query time if we hash m values. Making our
whole quest for O(1) query time pointless!

x h(x)

X, | 45

X, 1004

X3 7107

Xm | 12

EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

1

EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

Prih(x) = h(y)] < -

1

EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

Prih(x) = h(y)] < -

. J

Exercise: Rework the two level hashing proof to show that this
property is really all that is needed.

1

EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

Prih(x) = h(y)] < -

.

Exercise: Rework the two level hashing proof to show that this
property is really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],
Prlh(x) = h(y)] = + (so a fully random hash function is 2-universal)

1

EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

Prih(x) = h(y)] < -

.

Exercise: Rework the two level hashing proof to show that this
property is really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],
Prlh(x) = h(y)] = + (so a fully random hash function is 2-universal)

Efficient Alternative: Let p be a prime with p > |U]. Choose random
a,b € [p] with a # 0. Let:

h(x)=(ax+b mod p) mod n. »

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U — [n] is pairwise independent if for all i,j € [n]:
1

Prin() = inh() =] = —.

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U — [n] is pairwise independent if for all i,j € [n]:
. . 1
Prin(x) =inh(y) =] = -

Breakout: Which is a more stringent requirement? 2-universal or
pairwise independent?

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U — [n] is pairwise independent if for all i,j € [n]:
. . 1
Prin(x) =inh(y) =] = -

Breakout: Which is a more stringent requirement? 2-universal or
pairwise independent?

Prih(x) = h(y)] = Z Prlh(x)=inh(y)=il=n.-—= =

=1

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U — [n] is pairwise independent if for all i,j € [n]:
1

Prin() = inh() =] = —.

Breakout: Which is a more stringent requirement? 2-universal or
pairwise independent?

Prih(x) = h(y)] = Z Prlh(x)=inh(y)=il=n.-—= =

]
, n?2 n
=1

A closely related (ax +b) mod p construction gives pairwise
independence on top of 2-universality.

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U — [n] is pairwise independent if for all i,j € [n]:
1

Prin() = inh() =] = —.

Breakout: Which is a more stringent requirement? 2-universal or
pairwise independent?

n
. . 1
Prih(x) = h(y)] = Z Prlh(x) =inh(y)=il=n- pril
i=1
A closely related (ax +b) mod p construction gives pairwise
independence on top of 2-universality.

Remember: A fully random hash function is both 2-universal and
pairwise independent. But it is not efficiently implementable.

NEXT STEP

1. We'll consider an application where our toolkit of linearity of
expectation + Markov's inequality doesn’t give much.

13

NEXT STEP

1. We'll consider an application where our toolkit of linearity of
expectation + Markov's inequality doesn’t give much.

2. Then we'll show how a simple twist on Markov's can give a
much stronger result.

13

ANOTHER APPLICATION

Randomized Load Balancing:

‘ Client Requests

=

/N

i O
o I111] (o 1111] (o 1111

14

ANOTHER APPLICATION

Randomized Load Balancing:

s @

l 2 R_equests

/N
B AR, .. AD

o I111] (o 1111] (o 1111

Server 1 Server 2 Server k

Simple Model: n requests randomly assigned to k servers. How
many requests must each server handle?

14

ANOTHER APPLICATION

Randomized Load Balancing:

s @

l 2 R_equests

/N
B AR, .. AD

o I111] (o 1111] (o 1111

Server 1 Server 2 Server k

Simple Model: n requests randomly assigned to k servers. How
many requests must each server handle?

- Often assignment is done via a random hash function. Why?

14

WEAKNESS OF MARKOV'S

Expected Number of requests assigned to server i:
n n
. . n
E[R] = Z IE:[]Irequestj assigned to il = Z Pr[j assigned to i] = S
j=1 j=1

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

15

WEAKNESS OF MARKOV'S

Expected Number of requests assigned to server i:

n n
. L on
E[R] = Z IE:[]Irequestj assigned to il = Z Pr[j assigned to i] = S
j=1 j=1
If we provision each server be able to handle
, what is the probability that a server is

overloaded?

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

15

WEAKNESS OF MARKOV'S

Expected Number of requests assigned to server i:

n n
. L on
E[R] = Z IE:[]Irequestj assigned to il = Z Pr[j assigned to i] = S
j=1 j=1
If we provision each server be able to handle
, what is the probability that a server is

overloaded?

Applying Markov's Inequality
ER] 1

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

15

WEAKNESS OF MARKOV'S

Expected Number of requests assigned to server i:

n n
. L on
E[R] = 21 IE:[]Irequestj assigned to il = 21 Pr[j assigned to i] = S
j= j=
If we provision each server be able to handle
, what is the probability that a server is

overloaded?

Applying Markov's Inequality
ER] 1

2E[R] 2
Not great..half the servers may be overloaded.

PriR; = 2E[R{]] <

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

15

