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LOGISTICS

- Problem Set 5 was posted this morning, due 11/30.
- Problem Set 4 solutions were also posted.
- Exam will span December 3-4. Any two hour period.

- Exam review guide, practice problems, logistical details have
been posted under the schedule tab on the course page.

- I am holding an optional SRTI (course reviews) for this class
and would really appreciate your feedback (closes Dec 6).

- http://owl.umass.edu/partners/
courseEvalSurvey/uma/.

- We will post our exam review office hour schedules in the
5§
next day or two.



SUMMARY

Last Class:

- Introduction to online learning and regret.

+ Online gradient descent and its guarantees.
This Class:

* Finish online gradient descent analysis.

- Application to stochastic gradient descent.

-

- Course wrap up.



ONLINE OPTIMIZATION FORMAL SETUP
Online Optimization: In place of a single function f, we see a

different objective function at each step: \/

f17f27"'7ft:Rd — R

Will make no assumptions on how fy,...,f; are related to each
other.



ONLINE OPTIMIZATION FORMAL SETUP

Online Optimization: In place of a single function f, we see a
different objective function at each step:

f17f27"'7ft : Rd — R
®| 9'1. 9"'

- At each step, first pick (play) a parameter vector 6.
- Then are told f; and incur cost f;(61)). F\(Q‘SFFJ
- Goal: Minimize total cost =0, f;(61)).

- Metric: Regret = ¢ 1]‘,fH(’ — ming>2j_, fi(0).

Will make no assumptions on how fy,...,f; are related to each
other.



ONLINE GRADIENT DESCENT

< 4
Assume that: | 1000 |

* f1,...,frare all convex.
- Each f; is G-Lipschitz (i.e., | V£i(8)], < G for all 4.)
- |60 — g°f||, < R where 80V is the first vector chosen.

Online Gradient Descent m-\,\f{\“(@>
) e &
—> Pick some initial #()

g — R

—* Set step sizen = GVt

- Fori=1,.

- Playd ') and incur costfi\)

Le'“—e = - Vi) H _i



ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point () within

radius R of #97, using step size np = %, has regret bounded by:
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Upper bound on average regret goes to 0 and t — oo.



ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point () within

radius R of #97, using step size np = %, has regret bounded by:
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ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz f, ..., f:, OGD initialized with starting point () within
radius R of #97, using step size np = G\/, has regret bounded by:

ﬂc [Zﬁ ) Z (aoff)] < RGVt

i=1

Upper bound on average regret goes to 0 and t — oo.
goffHZ Hg(fﬂ) GoffHZ UGZ

2n

Step 1.1: For all i, Vf;(60)(80) — gory < 12
=

Convexity = Step 1: For all |,

() oy 189 — 67|12 — |00+ — |3 G2
fi(@") = fi(0°7) < + =
- 2n 2




ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point () within

radius R of #97, using step size np = %, has regret bounded by:

[iﬁ(fﬂ")) - iﬁ-(ef’ff)] < RGVE

i=1

. ; () _goff |12 — 11 9U+1) _goff
Step 1: For all, fi() — f(9°) < 1°=*"L: Lt e I 4 n¢’



ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-

Lipschitz f, ..., f:, OGD initialized with starting point 0" within

radius R of 897, using step size n = G\/, has regret bounded by:
N
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STOCHASTIC GRADIENT DESCENT

o
Stochastic gradient descent is an efficient offline optimization
method, seeking § with
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STOCHASTIC GRADIENT DESCENT

Stochastic gradient descent is an efficient offline optimization
method, seeking § with

— —

f(9) < minf(6) + e = f6") + .

- The most popular optimization method in modern machine
learning.

- Easily analyzed as a special case of online gradient descent!



STOCHASTIC GRADIENT DESCENT
Assume that: /Q,\\ku [Na% ?f@""’

+ fis convex and decomposable as f(6) = 3/, f;(0).
CEg, L(G,X) =320, 0(6.%). —

t = k}c{ _\_ . \ .

Jm‘ﬂ'vb%dr > oAt poeal Xy




STOCHASTIC GRADIENT DESCENT

Assume that:

+ fis convex and decomposable as f(6) = 3/, f;(0).
Eg, L(0.X) = XL 40, %)
Each}j is S-Lipschitz (i.e, | Vi(8)]l2 < & for all 4.)
- What does this imply about how L\pscmtzfis?

[Tl [va@o rvae - Vel
W,f N5 @) 1, S n«_i . &



STOCHASTIC GRADIENT DESCENT

Assume that:

—

- fis convex and decomposable as f(#) = Zfzqﬁ(é).
CEg, LEX) =YL 00%). T

- Each f; is S-Lipschitz (i.e, | Vfi(8)|l» < & for all 4.)
- What does this imply about how Lipschitz f is?

- Initialize with 6 satisfying |80 — 6*||, < R.




STOCHASTIC GRADIENT DESCENT

>< ),6 { \of«(&C w
Assume that: ﬁ _“Q/LP«\é_;Nbi

—

- fis convex and decomposable as f(f) = Z; 1£i(0).
——— c—e
- Eg, (6, x =0 40, %).
- Each f; is S-Lipschitz (i.e, | Vfi(8)|l» < & for all 4.)
- What does this imply about how L\pscmtzfis? e
- Initialize with 6 satisfying |80 — 6*||, < R.

Stochastic Gradient Descent

) N \,\,\»/\ n -15 \Vf'/
- Pick some initial () NY @59 UUSTN
© Set step size 77 = \/ OR \y,&g \v—/ ~ £\
- Fori=1,. N X “/H'
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CPick random JIx:
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STOCHASTIC GRADIENT DESCENT

Stochastic Gradient Descent

‘Batch' Gradient Descent

[} 500 1000 1500 2000 2500 3000 3500

Gli+") 25(1) n - Vf,( DY vs. GUFD = gi) — 5. Vf(6N)
L 1% qZ” vaE) ivr(e)
Note that: IE[V]‘/-I(H N] = 1VA(H0). S

a\7@(«9)

Analysis extends to any algorithm that takes the gradient step
in expectation (minibatch SGD, randomly quantized,
measurement noise, differentially private, etc.)



STOCHASTIC GRADIENT DESCENT ANALYSIS

Theorem - SGD on Convex Lipschitz Functions: SGD run with

t> R;Gz iterations, n = Giﬂ, and starting point within radius R

of 6%, outputs @ satisfying: E[f(0)] < f(67) + e
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> EC | = Giﬂ, and starting point within radius R
of 6*, outputs @ satisfying: E[f(9)] < f(67) + «.

Step 1: f(9) — f(0*) < Z/ [769) —f(67)]
;0 & NY does Mg
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Theorem - SGD on Convex Lipschitz Functions: SGD run with

t> R;Gz iterations, n = G\/ and starting point within radius R
of 6*, outputs § satisfying: E[f(9)] < f(6*)
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> R;Gz i = Giﬂ, and starting point within radius R

of 6*, outputs @ satisfying: E[f(9)] < f(67) + «.

Step 1: f(9) — f(6*) < 1 S, [f(6D) — f(6” 0@

step 2: E[f(9) — f(6°)] < 2 - E [ [7,(69) — i (6)]]
~_—4—/}<

Step 3: E[f(A) - f(6")] < ¢ - E[SL[5,(0) - 6]
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> BE | G\/, and starting point within radius R

of %, outputs 8 satisfying: E[f(9)] < f(6*) + e.

step 1: f(0) = f(07) < ¢ T If(0") — f(6))
Step 2: E[f(9) —f(6°)] < ¢ - E [0, (60) —f,-,w*)]} .

step 3t BIf(9) — f(6°)] < 4 - B [ [060) — £, ¢°71] .
yA

G t= b

Step 4: E[f(9) — f(0")] <} -R- - Vi=%. < >

e
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SGD VS. GD

Stochastic gradient descent generally makes more iterations
than gradient descent.

Each iteration is much cheaper (by a factor of n).

vZf,g VFi(0)

\-L_/



SGD VS. GD

when f7) = 571 f(6) and | V(@) < &

Theorem - SGD: After t > “Witerations outputs 8 satisfying:

€

E[f(9)] < f(6) +e.

When [Z£(8)]. < &

Theorem - GD: After t > U iterations outputs @ satisfying:

€

f(8) < f(6°) +e.
Bot  aedn emdles s & e &
=&




SGD VS. GD

When f(6) = 327, £(6) and [ Vi(9)]2 < §:

Theorem - SGD: After ¢ > r»:rb:;‘ .

E[f(B)] < f(6%) + ¢
When |[VA(9)] < G:
Theorem - GD: After t > — iterations outputs 4 satisfying:
f(8) < f(67) + €

IVAO 2 = IVAO) + ...+ V@) < S V@) <n- £ <G
é< &




SGD VS. GD

When f(6) = 3L £i(9) and [|V£i(@)]. < ¢:

Theorem - SGD: After ¢ > r»:rb:;‘ .

E[f(0)] < f(6") + ¢
When ||[Vf(8)|, < G: << &
Theorem - GD: After t > — iterations outputs 4 satisfying:
f9) < f(67) +

VA2 = IVfi( )+ .+ V(O < LIV <n- £ <G
When would this bound be tight? - —

e = n-&=-c



RANDOMIZED METHODS

Randomization as a computational resource for massive datasets.
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Randomization as a computational resource for massive datasets.

-+ Focus on problems that are easy on small datasets but hard at
massive scale - set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).
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RANDOMIZED METHODS

Randomization as a computational resource for massive datasets.

-+ Focus on problems that are easy on small datasets but hard at
massive scale - set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

- Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms.

- In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.
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lemma: compression from any d-dimensions to O(logn/¢?)
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DIMENSIONALITY REDUCTION

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(logn/¢?)
dimensions while preserving pairwise distances.

- Connections to the weird geometry of high-dimensional space.

- Dimensionality reduction via low-rank approximation and optimal
solution with PCA/eigendecomposition/SVD.

+ Low-rank approximation of similarity matrices and entity
embeddings (e.g,, LSA, word2vec, DeepWalk).

- Spectral graph theory — nonlinear dimension reduction and
spectral clustering for community detection.

- In the process covered linear algebraic tools that are very broadly
useful in ML and data science: eigendecomposition, singular value

decomposition, projection, norm transformations.
14
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CONTINUOUS OPTIMIZATION

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

- How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

- Simple extension to projected gradient descent for optimization
over a convex constraint set.

+ Online optimization and online gradient descent — stochastic
gradient descent.

- Lots that we didn’t cover: accelerated methods, adaptive methods,
second order methods (quasi-Newton methods), practical
considerations. Gave mathematical tools to understand these
methods.
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