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LOGISTICS

- Problem Set 4 is due tomorrow at 8pm.
- Optional Problem Set 5 will be released tomorrow, due 11/30.

- Exam will span December 3-4. Any two hour period.
DEeCEmber 54

- Exam review guide, practice problems, logistical details have
been posted under the schedule tab on the course page.

- 1 am holding an optional SRTI (course reviews) for this class
___and would really appreciate your feedback (closes Dec 6).

- http://owl.umass.edu/partners/
courseEvalSurvey/uma/.



SUMMARY

J
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- Analysis of gradient descent for optimizing convex functions.

- Introduction to convex sets and projection functions.

- (The same) analysis of projected gradient descent for optimizing
under convex functions under (convex) constraints. ~ © e S

This Class:

- Online learning, regret, and online gradient descent.

@plication to stochastic gradient descent.
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TEST OF INTUITION

What does f1(0) + f>(0) + f3(6) look like?
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TEST OF INTUITION
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sum of convex functions is always convex (good exeruse).



ONLINE GRADIENT DESCENT

In reality many learning problems are online.
- Websites optimize ads or recommendations to show users, given
continuous feedback from these users.

- Spam filters are incrementally updated and adapt as they see
more examples of spam over time.

- Face recognition systems, other classification systems, learn from
mistakes over time.
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ONLINE GRADIENT DESCENT

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users, given
continuous feedback from these users.

- Spam filters are incrementally updated and adapt as they see
more examples of spam over time.

- Face recognition systems, other classification systems, learn from
mistakes over time.

Want to minimize some global loss L(6,X) = S_7_ £(6, %), when data

points are presented in an online fashion X1, X, ..., X, (similar to
streaming algorithms)

(Stochastic gradient descent is a special case: when data points are
considered a random order for computational reasons.

—



ONLINE OPTIMIZATION FORMAL SETUP

Online Optimization: In place of a single function f, we see a
different objective function at each step:
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- At each step, first pick (play) a parameter vector 6.
- Then are told f; and incur cost f;(61)).
- Goal: Minimize total cost 3_L_, f;(61)).



ONLINE OPTIMIZATION FORMAL SETUP

Online Optimization: In place of a single function f, we see a
different objective function at each step:

fTasz"'?ft:Rd —+ R

- At each step, first pick (play) a parameter vector 6.
- Then are told f; and incur cost f;(61)).
- Goal: Minimize total cost 3_L_, f;(61)).

Our analysis will make no assumptions on how fq,...,f; are
related to each other!



ONLINE OPTIMIZATION EXAMPLE

Ul design via online optimization.

S Addtocart )

- Parameter vector §(): some encoding of the layout at step |.

- Functions fi,....f: £;(6¥) = 1if user does not click ‘add to
cart’ and f;(61)) = 0 if they do click.
- Want to maximize number of purchases. l.e,, minimize

> fi(00).
— S 7



ONLINE OPTIMIZATION EXAMPLE
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Home pricing tools.

linear model
(%, 6)

) $275,000

X = [#baths, #beds, #floors ...]
3 = —— \/\Qw ‘\
- Parameter vector 90 coefficielts of linear model at step .
- Functions f, ..., fr f~g§(i)) = ((X;, 61 — price;)? revealed
when home; is listed or sold.
- Want to minimize total squared error >_1_. f;(8)) (same as
classic least squares regression). -
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In normal optimization, we seek 8 satisfying:
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REGRET

In normal optimization, we seek 8 satisfying:

f(B) < minf(6) + .
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REGRET

In normal optimization, we seek 8 satisfying:
f(B) < minf(6) + .

In online optimization we will ask for the same.

t

t
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e is called the regret.

- This error metric is a bit ‘unfair. Why? }
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REGRET
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In normal optimization, we seek 6 satisfying:

) < min f(6) + . €20

In online optimization we will ask for the same.

t t t

> (@) <min > fi(0)- Z fi6") +
2= ' = '

e is called the regret.

- This error metric is a bit ‘unfair. Why?

- Comparing online solution to best fixed solution in
hindsight. € can be negative!



INTUITION CHECK
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INTUITION CHECK
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What if for i =1,...,t, fi(#) = |6 —1000] or f;(#) = |6 + 1000] in
an alternating pattern? - -0

4
How small can the regret e be?\z_iif/,-@) < M) +e

~ 10007 1000+
What if for i =1,....t, (8) = |0 — 1000| or £.(8) = |0 £1000] ir

no particular pattern? How can any online learning algorithm
hope to achieve small regret?
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ONLINE GRADIENT DESCENT

Assume that:

—> f1,...,fr are all convex.
—> Each fj is G-Lipschitz (i.e., | V£i(8), < G for all 4.)
+ 108 — 6°F, < R where () is the first vector chosen.
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ONLINE GRADIENT DESCENT
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Assume that: -0 CM): (000 WO2LD. | S\/QQ

e oo ER(e) = ™00 “Ivg 04
* f1,...,frare all convex.

- Each f; is G-Lipschitz (i.e, ||[Vfi(0 )Hz < G for all )
- |60 — g°f||, < R where 80V is the first vector chosen.

Online Gradient Descent

- Pick some initial §M

- Set step size n = GL\/E'
- Fori=1,...,t
—% Play 1) and incur cost f;(41).
. 91+1 9 _n.ﬁfl_(é'(i))



ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point () within

radius R of #97, using step size np = %, has regret bounded by:
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ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point () within
radius R of #97, using step size n = =&-, has regret bounded by:
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Upper bound on average regret goes to 0 and t — oo.
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ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point () within

radius R of #97, using step size np = %, has regret bounded by:

[Zt:ﬁ(ﬁ")) - iﬁ-(af’ff )] < RGVE

i=1

Upper bound on average regret goesto 0 and t — oo. NoO
assumptions on fi,...,f¢!



