

COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.

Lecture 23

LOGISTICS

- Problem Set 4 is due next Wednesday, 8pm.
- Week 12 Quiz is due Monday, 8pm.
- The final will be 12/3-12/4, in any two hour window.
- Final review sheet is posted under the 'Schedule Tab'. I will continue to add to this.
- Office hours will be held before the final. Times TBA.

Last Class:

- Multivariable calculus review and gradient computation.
- Introduction to gradient descent. Motivation as a greedy algorithm.
- Conditions under which we will analyze gradient descent: convexity and Lipschitzness.

This Class:

- Analysis of gradient descent for Lipschitz, convex functions.
- Extension to projected gradient descent for **constrained optimization**.

Definition – Convex Function: A function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is convex if and only if, for any $\vec{\theta}_1, \vec{\theta}_2 \in \mathbb{R}^d$ and $\lambda \in [0, 1]$:

$$(1 - \lambda) \cdot f(\vec{\theta}_1) + \lambda \cdot f(\vec{\theta}_2) \geq f((1 - \lambda) \cdot \vec{\theta}_1 + \lambda \cdot \vec{\theta}_2)$$

Corollary – Convex Function: A function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is convex if and only if, for any $\vec{\theta}_1, \vec{\theta}_2 \in \mathbb{R}^d$ and $\lambda \in [0, 1]$:

$$f(\vec{\theta}_2) - f(\vec{\theta}_1) \geq \vec{\nabla}f(\vec{\theta}_1)^T (\vec{\theta}_2 - \vec{\theta}_1)$$

Definition – Lipschitz Function: A function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is G -Lipschitz if $\|\vec{\nabla}f(\vec{\theta})\|_2 \leq G$ for all $\vec{\theta}$.

Assume that:

- f is convex.
- f is G -Lipschitz.
- $\|\vec{\theta}_1 - \vec{\theta}_*\|_2 \leq R$ where $\vec{\theta}_1$ is the initialization point.

Gradient Descent

- Choose some initialization $\vec{\theta}_1$ and set $\eta = \frac{R}{G\sqrt{t}}$.
- For $i = 1, \dots, t-1$
 - $\vec{\theta}_{i+1} = \vec{\theta}_i - \eta \vec{\nabla} f(\vec{\theta}_i)$
- Return $\hat{\theta} = \arg \min_{\vec{\theta}_1, \dots, \vec{\theta}_t} f(\vec{\theta}_i)$.

Theorem – GD on Convex Lipschitz Functions: For convex G -Lipschitz function f , GD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 1: For all i , $f(\vec{\theta}_i) - f(\vec{\theta}_*) \leq \frac{\|\vec{\theta}_i - \vec{\theta}_*\|_2^2 - \|\vec{\theta}_{i+1} - \vec{\theta}_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$. **Visually:**

Theorem – GD on Convex Lipschitz Functions: For convex G -Lipschitz function f , GD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 1: For all i , $f(\vec{\theta}_i) - f(\vec{\theta}_*) \leq \frac{\|\vec{\theta}_i - \vec{\theta}_*\|_2^2 - \|\vec{\theta}_{i+1} - \vec{\theta}_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$. **Formally:**

Theorem – GD on Convex Lipschitz Functions: For convex G -Lipschitz function f , GD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 1: For all i , $f(\vec{\theta}_i) - f(\vec{\theta}_*) \leq \frac{\|\vec{\theta}_i - \vec{\theta}_*\|_2^2 - \|\vec{\theta}_{i+1} - \vec{\theta}_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.1: $\vec{\nabla}f(\vec{\theta}_i)^T(\vec{\theta}_i - \vec{\theta}_*) \leq \frac{\|\vec{\theta}_i - \vec{\theta}_*\|_2^2 - \|\vec{\theta}_{i+1} - \vec{\theta}_*\|_2^2}{2\eta} + \frac{\eta G^2}{2} \implies \text{Step 1.}$

Theorem – GD on Convex Lipschitz Functions: For convex G -Lipschitz function f , GD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 1: For all i , $f(\vec{\theta}_i) - f(\vec{\theta}_*) \leq \frac{\|\vec{\theta}_i - \vec{\theta}_*\|_2^2 - \|\vec{\theta}_{i+1} - \vec{\theta}_*\|_2^2}{2\eta} + \frac{\eta G^2}{2} \implies$

Step 2: $\frac{1}{t} \sum_{i=1}^t f(\vec{\theta}_i) - f(\vec{\theta}_*) \leq \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2}.$

Theorem – GD on Convex Lipschitz Functions: For convex G -Lipschitz function f , GD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 2: $\frac{1}{t} \sum_{i=1}^t f(\vec{\theta}_i) - f(\vec{\theta}_*) \leq \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2}.$

CONSTRAINED CONVEX OPTIMIZATION

Often want to perform **convex optimization** with convex constraints.

$$\vec{\theta}^* = \arg \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}),$$

where \mathcal{S} is a **convex set**.

Definition – Convex Set: A set $\mathcal{S} \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta}_1, \vec{\theta}_2 \in \mathcal{S}$ and $\lambda \in [0, 1]$:

$$(1 - \lambda)\vec{\theta}_1 + \lambda \cdot \vec{\theta}_2 \in \mathcal{S}$$

E.g. $\mathcal{S} = \{\vec{\theta} \in \mathbb{R}^d : \|\vec{\theta}\|_2 \leq 1\}$.

PROJECTED GRADIENT DESCENT

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

- $P_{\mathcal{S}}(\vec{y}) = \arg \min_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} - \vec{y}\|_2$.
- For $\mathcal{S} = \{\vec{\theta} \in \mathbb{R}^d : \|\vec{\theta}\|_2 \leq 1\}$ what is $P_{\mathcal{S}}(\vec{y})$?
- For \mathcal{S} being a k dimensional subspace of \mathbb{R}^d , what is $P_{\mathcal{S}}(\vec{y})$?

Projected Gradient Descent

- Choose some initialization $\vec{\theta}_1$ and set $\eta = \frac{R}{G\sqrt{t}}$.
- For $i = 1, \dots, t-1$
 - $\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$
 - $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$.
- Return $\hat{\theta} = \arg \min_{\vec{\theta}_i} f(\vec{\theta}_i)$.

Projected gradient descent can be analyzed identically to gradient descent!

Theorem – Projection to a convex set: For any convex set $\mathcal{S} \subseteq \mathbb{R}^d$, $\vec{y} \in \mathbb{R}^d$, and $\vec{\theta} \in \mathcal{S}$,

$$\|P_{\mathcal{S}}(\vec{y}) - \vec{\theta}\|_2 \leq \|\vec{y} - \vec{\theta}\|_2.$$

PROJECTED GRADIENT DESCENT ANALYSIS

Theorem – Projected GD: For convex G -Lipschitz function f , and convex set \mathcal{S} , Projected GD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon = \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}) + \epsilon$$

Recall: $\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$ and $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$.

Step 1: For all i , $f(\vec{\theta}_i) - f(\vec{\theta}_*) \leq \frac{\|\vec{\theta}_i - \vec{\theta}_*\|_2^2 - \|\vec{\theta}_{i+1}^{(out)} - \vec{\theta}_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.a: For all i , $f(\vec{\theta}_i) - f(\vec{\theta}_*) \leq \frac{\|\vec{\theta}_i - \vec{\theta}_*\|_2^2 - \|\vec{\theta}_{i+1} - \vec{\theta}_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 2: $\frac{1}{t} \sum_{i=1}^t f(\vec{\theta}_i) - f(\vec{\theta}_*) \leq \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2} \implies \text{Theorem.}$