COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.

Lecture 22

LOGISTICS

- · Problem Set 3 grades will be released later today.
- · Final review sheet will be release imminently.

Last Class: Fast computation of the SVD/eigendecomposition.

- · Power method for computing the top singular vector of a matrix.
- Power method is a simple iterative algorithm for solving the non-convex optimization problem:

$$\max_{\vec{v}: \|\vec{v}\|_2^2 = 1} |\vec{v}^T \mathbf{A} \vec{v}|.$$

Final Two Weeks of Class:

- More general iterative algorithms for optimization, specifically gradient descent and its variants.
- What are these methods, when are they applied, and how do you analyze their performance?
- · Small taste of what you can find in COMPSCI 5900P or 6900P.

DISCRETE VS. CONTINUOUS OPTIMIZATION

Discrete (Combinatorial) Optimization: (traditional CS algorithms)

- Graph Problems: min-cut, max flow, shortest path, matchings, maximum independent set, traveling salesman problem
- Problems with discrete constraints or outputs: bin-packing, scheduling, sequence alignment, submodular maximization
- Generally searching over a finite but exponentially large set of possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

- · Unconstrained convex and non-convex optimization.
- Linear programming, quadratic programming, semidefinite programming

CONTINUOUS OPTIMIZATION EXAMPLES

MATHEMATICAL SETUP

Given some function $f: \mathbb{R}^d \to \mathbb{R}$, find $\vec{\theta}_{\star}$ with:

$$f(\vec{\theta}_{\star}) = \min_{\vec{\theta} \in R^d} f(\vec{\theta}) + \epsilon$$

Typically up to some small approximation factor.

Often under some constraints:

- $\|\vec{\theta}\|_{2} \le 1, \|\vec{\theta}\|_{1} \le 1.$
- $\cdot \ \ A\vec{ heta} \leq \vec{b}, \ \ \vec{ heta}^{T} A\vec{ heta} \geq 0.$
- $\sum_{i=1}^{d} \vec{\theta}(i) \leq c$.

WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

- Have a model, which is a function mapping inputs to predictions (neural network, linear function, low-degree polynomial etc).
- The model is parameterized by a parameter vector (weights in a neural network, coefficients in a linear function or polynomial)
- Want to train this model on input data, by picking a parameter vector such that the model does a good job mapping inputs to predictions on your training data.

This training step is typically formulated as a continuous optimization problem.

Example 1: Linear Regression

Model: $M_{\vec{\theta}} : \mathbb{R}^d \to \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text{def}}{=} \langle \vec{\theta}, \vec{x} \rangle = \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d)$.

Parameter Vector: $\vec{\theta} \in \mathbb{R}^d$ (the regression coefficients)

Optimization Problem: Given data points (training points) $\vec{x}_1, \dots, \vec{x}_n$ (the rows of data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$) and labels $y_1, \dots, y_n \in \mathbb{R}$, find $\vec{\theta}_*$ minimizing the loss function:

$$L_{X,y}(\vec{\theta}) = L(\vec{\theta}, X, \vec{y}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)$$

where ℓ is some measurement of how far $M_{\vec{\theta}}(\vec{x}_i)$ is from y_i .

- $\ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = (M_{\vec{\theta}}(\vec{x}_i) y_i)^2$ (least squares regression)
- $y_i \in \{-1,1\}$ and $\ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = \ln(1 + \exp(-y_i M_{\vec{\theta}}(\vec{x}_i)))$ (logistic regression)

OPTIMIZATION IN ML

Example 2: Neural Networks

Model: $M_{\vec{\theta}} : \mathbb{R}^d \to \mathbb{R}$. $M_{\vec{\theta}}(\vec{x}) = \langle \vec{w}_{out}, \sigma(\mathbf{W}_2 \sigma(\mathbf{W}_1 \vec{x})) \rangle$.

Parameter Vector: $\vec{\theta} \in \mathbb{R}^{(\# \ edges)}$ (the weights on every edge)

Optimization Problem: Given data points $\vec{x}_1, \dots, \vec{x}_n$ and labels $y_1, \dots, y_n \in \mathbb{R}$, find $\vec{\theta}_*$ minimizing the loss function:

$$L_{\mathbf{X},\vec{\mathbf{y}}}(\vec{\theta}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{\mathbf{x}}_i), \mathbf{y}_i)$$

$$L_{X,\vec{y}}(\vec{\theta}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)$$

- Supervised means we have labels y_1, \ldots, y_n for the training points.
- Solving the final optimization problem has many different names: likelihood maximization, empirical risk minimization, minimizing training loss, etc.
- Continuous optimization is also very common in unsupervised learning. (PCA, spectral clustering, etc.)
- Generalization tries to explain why minimizing the loss $L_{X,\vec{y}}(\vec{\theta})$ on the *training points* minimizes the loss on future *test points*. I.e., makes us have good predictions on future inputs.

OPTIMIZATION ALGORITHMS

Choice of optimization algorithm for minimizing $f(\vec{\theta})$ will depend on many things:

- The form of f (in ML, depends on the model & loss function).
- Any constraints on $\vec{\theta}$ (e.g., $||\vec{\theta}|| < c$).
- · Computational constraints, such as memory constraints.

$$L_{\mathbf{X},\vec{\mathbf{y}}}(\vec{\theta}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{\mathbf{x}}_i), \mathbf{y}_i)$$

What are some popular optimization algorithms?

GRADIENT DESCENT

Next few classes: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be applied to almost any continuous function we care about optimizing.
- Often not the 'best' choice for any given function, but it is the approach of choice in ML since it is simple, general, and often works very well.
- At each step, tries to move towards the lowest nearby point in the function that is can in the opposite direction of the gradient.

Let $\vec{e}_i \in \mathbb{R}^d$ denote the i^{th} standard basis vector, $\vec{e}_i = \underbrace{[0,0,1,0,0,\ldots,0]}_{1 \text{ at position } i}$.

Partial Derivative:

$$\frac{\partial f}{\partial \vec{\theta}(i)} = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \cdot \vec{e}_i) - f(\vec{\theta})}{\epsilon}.$$

Directional Derivative:

$$D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \vec{v}) - f(\vec{\theta})}{\epsilon}.$$

MULTIVARIATE CALCULUS REVIEW

Gradient: Just a 'list' of the partial derivatives.

$$\vec{\nabla}f(\vec{\theta}) = \begin{bmatrix} \frac{\partial f}{\partial \vec{\theta}(1)} \\ \frac{\partial f}{\partial \vec{\theta}(2)} \\ \vdots \\ \frac{\partial f}{\partial \vec{\theta}(d)} \end{bmatrix}$$

Directional Derivative in Terms of the Gradient:

$$D_{\vec{v}} f(\vec{\theta}) = \langle \vec{v}, \vec{\nabla} f(\vec{\theta}) \rangle.$$

FUNCTION ACCESS

Often the functions we are trying to optimize are very complex (e.g., a neural network). We will assume access to:

Function Evaluation: Can compute $f(\vec{\theta})$ for any $\vec{\theta}$.

Gradient Evaluation: Can compute $\vec{\nabla} f(\vec{\theta})$ for any $\vec{\theta}$.

In neural networks:

- Function evaluation is called a forward pass (propogate an input through the network).
- Gradient evaluation is called a backward pass (compute the gradient via chain rule, using backpropagation).

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} + \eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f(\vec{\theta}^{(i-1)} + \eta \vec{v})$.

$$D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \vec{v}) - f(\vec{\theta})}{\epsilon} . D_{\vec{v}} f(\vec{\theta}^{(i-1)}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta}^{(i-1)} + \epsilon \vec{v}) - f(\vec{\theta}^{(i-1)})}{\epsilon}.$$

So for small η :

$$f(\vec{\theta}^{(i)}) - f(\vec{\theta}^{(i-1)}) = f(\vec{\theta}^{(i-1)} + \eta \vec{\mathsf{v}}) - f(\vec{\theta}^{(i-1)}) \approx \eta \cdot \mathsf{D}_{\vec{\mathsf{v}}} f(\vec{\theta}^{(i-1)})$$
$$= \eta \cdot \langle \vec{\mathsf{v}}, \vec{\nabla} f(\vec{\theta}^{(i-1)}) \rangle.$$

We want to choose \vec{v} minimizing $\langle \vec{v}, \vec{\nabla} f(\vec{\theta}^{(i-1)}) \rangle$ – i.e., pointing in the direction of $\vec{\nabla} f(\vec{\theta}^{(i-1)})$ but with the opposite sign.

Gradient Descent

- Choose some initialization $\vec{\theta}^{(0)}$.
- For i = 1, ..., t• $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} - \eta \nabla f(\vec{\theta}^{(i-1)})$
- Return $\vec{\theta}^{(t)}$, as an approximate minimizer of $f(\vec{\theta})$.

Step size η is chosen ahead of time or adapted during the algorithm (details to come.)

 \cdot For now assume η stays the same in each iteration.

WHEN DOES GRADIENT DESCENT WORK?

Gradient Descent Update: $\vec{\theta_{i+1}} = \vec{\theta_{i}} - \eta \nabla f(\vec{\theta_{i}})$

CONVEXITY

Definition – Convex Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0, 1]$:

$$(1 - \lambda) \cdot f(\vec{\theta}_1) + \lambda \cdot f(\vec{\theta}_2) \ge f((1 - \lambda) \cdot \vec{\theta}_1 + \lambda \cdot \vec{\theta}_2)$$

CONVEXITY

Corollary – Convex Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0,1]$:

$$f(\vec{\theta}_2) - f(\vec{\theta}_1) \ge \vec{\nabla} f(\vec{\theta}_1)^T \left(\vec{\theta}_2 - \vec{\theta}_1\right)$$

CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, if the step size η is chosen appropriately, gradient descent will converge to a approximate minimizer $\hat{\theta}$ with:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon = \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.$$

Examples: least squares regression, logistic regression, sparse regression (lasso), regularized regression, SVMS,...

Non-Convex Functions: After sufficient iterations, gradient descent will converge to a approximate stationary point $\hat{\theta}$ with:

$$\|\nabla f(\hat{\theta})\|_2 \leq \epsilon.$$

Examples: neural networks, clustering, mixture models.

Gradient Descent Update:

$$\vec{\theta}_{i+1} = \vec{\theta}_i - \eta \nabla f(\vec{\theta}_i)$$

For fast convergence, need to assume that the function is Lipschitz (size of gradient is bounded): There is some G s.t.:

$$\forall \vec{\theta}: \quad \|\vec{\nabla} f(\vec{\theta})\|_2 \leq G \Leftrightarrow \forall \vec{\theta_1}, \vec{\theta_2}: \quad |f(\vec{\theta_1}) - f(\vec{\theta_2})| \leq G \cdot \|\vec{\theta_1} - \vec{\theta_2}\|_2$$

Gradient Descent analysis for convex, Lipschitz functions.