COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.
Lecture 22

LOGISTICS

\,.,&J'?/ r\\/%‘-
- Problem Set 3 grades Wrttbe released [ater today.

- Final review sheet will be release imminently.

SUMMARY

Last Class: Fast computation of the SVD/eigendecomposition.
~V,

- Power method for computing the top singular vector of a matrix.

- Power method is a simple iterative algorithm for solving the

non-convex optimization problem: Co\fa\/\'l‘ F,’_Sd,‘r,_,
max |[VTAV].

v (|vlI3=1
Final Two Weeks of Class:
+ More general iterative algorithms for optimization, specifically

gradient descent and its variants.

- What are these methods, when are they applied, and how do you
analyze their performance?

- Small taste of what you can find in COMPSCI 5900P or 6900P.

DISCRETE VS. CONTINUOUS OPTIMIZATION

Escrete (Combinatorial) Optimization: (traditional CS algorithms)

+ Graph Problems: min-cut, max flow, shortest path, matchings,

maximum independent set, traveling salesman problem
e

* Problems with discrete constraints or outputs;_hin-packing,
scheduling, sequence alignment, submodular maximization

- Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

‘ . S . .
\ﬂnuous Optimization: (maybe seen in ML/advanced algorithms)

+ Unconstrained convex and non-convex optimization.

- Linear programming, quadratic programming, semidefinite

programming

CONTINUOUS OPTIMIZATION EXAMPLES

N
0 eR

\ \6/ o feER

A et
N (RSS2

0 € R?

MATHEMATICAL SETUP

Y
A

Given some function f: RY — R, find 6, with:

MATHEMATICAL SETUP

Given some function f: RY — R, find 6, with:

Typically up to some small approximation factor.

MATHEMATICAL SETUP

Given some function f: RY — R, find 6, with:

Typically up to some small approximation factor.
Often under some constraints: '
\d‘%\ \9Hz <1, 16l <1 UJIJ\“’ TASW,@A
Ae <b, §a6>0"

. 6(0) <

WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

* Have a model, which is a function mapping inputs to predictions
(neural network, linear function, low-degree polynomial etc). Jd

=P

- The model is parameterized by a parameter vector (weights in a
neural network, coefficients in a linear function or polynomial)

- Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
predictions on your training data.

This training step is typically formulated as a continuous
optimization problem.

OPTIMIZATION IN ML

Example 1: Linear Regression

OPTIMIZATION IN ML

e Pt Pre deadiR

Example 1: Linear Regression &€ Voo

Model: Mz : RY — R with My(X) L. %)

OPTIMIZATION IN ML

Example 1: Linear Regression

Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).

OPTIMIZATION IN ML

Example 1: Linear Regression
Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).

Parameter Vector: § € RY (the regression coefﬁcients)

OPTIMIZATION IN ML

Example 1: Linear Regression
Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefﬁcients)

Optimization Problem: Given data points (training points) Xi, ..., X,
(the rows of data matrix X € R"*9) and labels yi,...,y, € R, find 6.
minimizing the loss function:

n
\L,(g)_(a):/:) = ZaMi(j(I%yl)
i=1

where ¢ is some measurement of how far Mz(X;) is from y;.

OPTIMIZATION IN ML

Example 1: Linear Regression] °

—

—

Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefﬁaents)

Optimization Problem: Given data points (training points) Xi, ..., X,
(the rows of data matrix X € R"*9) and labels yi,...,y, € R, find 6.
minimizing the loss function:

n
@) = Z:Z(Ma(xl) Vi)
where ¢ is some measure\gment of how far My(x;) is from y;.

UMK, yi) = (a(*)) (least squares regression)

v € {=1,1} and {My(X;), yi) = In (1 + exp(—yiMg(X;))) (logistic
regression)

OPTIMIZATION IN ML

Example 1: Linear Regression
Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefﬁcients)

Optimization Problem: Given data points (training points) Xi, ..., X,
(the rows of data matrix X € R"*9) and labels yi,...,y, € R, find 6.

minimizing the loss function:
1v~~’ N\%

(0) = L(6,X,y) = Zr

where ¢ is some measurement of hovv far Mz(X;) is from ;.

“UMHX), i) = (Mz(%5) — y,-)2 (least squares regression)

Cyie {—1,1} and é(Mg()?f),y,) =In (1 + exp(—yiM(;()?,»))) (logistic
regression)

OPTIMIZATION IN ML

Example 2: Neural Networks

Output
Input Layer Layer 1 Layer 2 Layer

Model: My : RY — R. Mz(X) = (Wout, o (Woo (W1X))).
Parameter Vector: § € R(# €d9¢s) (the weights on every edge)

Optimization Problem: Given data points X;,..., X, and labels
Vi,...,¥Yn € R, find g, minimizing the loss function:

Ly 7(0) = ZZ(M(?()?:'),)/I')

OPTIMIZATION IN ML

_

Lo-ge

+ Supervised means we have labels yy, ..., y, for the training points.

- Solving the final optimization problem has many different names:
likelihood maximization, empirical risk minimization, minimizing
training loss, etc.

| Continuous optimization is also very common in unsupervised
learning. (PCA, spectral clustering, etc.)

—

* Generalization tries to explain why minimizing the loss Ly 3(¢) on
the training points minimizes the loss on future test points. l.e,,
makes us have good predictions on future inputs.

OPTIMIZATION ALGORITHMS

Choice of optimization algorithm for minimizing f(¢) [l depend on
things:

many things: LLx,j(Q)

+ The form of f (in ML, depends on the model & loss function).

- Any constraints on § (e.g., ||4]| < c).

- Computational constraints, such as memory constraints.

y 9) = Z“Me()_@) Y/)

10

OPTIMIZATION ALGORITHMS

-

Choice of optimization algorithm for minimizing f(#) will depend on
many things:

+ The form of f (in ML, depends on the model & loss function).
- Any constraints on 6 (e, [|4]| < o).

- Computational constraints, such as memory constraints.
\——%

Ly 7(0) = Zg(/‘/‘g(%;)’)//')

What are some popular optimization algorithms? Y
ADAM. |, Ad oest lbFoys (}\)M_ﬂn e
(V-LE;&\ N}N\"”“
[Stodetic gt dsord SO

ﬁ/v\é,u)(. w‘\'\ﬁ\ D 10

GRADIENT DESCENT

Next few classes: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be applied
to almost any continuous function we care about optimizing.

- Often not the ‘best’ choice for any given function, but it isthe
approach of choice in ML since it is simple, general, and often
works very well.

- At each step, tries to move towards the lowest nearby point in the
function that is can - in the opposite direction of the gradient.

MULTIVARIATE CALCULUS REVIEW

Let &; € RY denote the it" standard basis vector,
& =[0,0,1,0,0,...,0].

1at position i

MULTIVARIATE CALCULUS REVIEW

Let &; € RY denote the it" standard basis vector,
& =[0,0,1,0,0,...,0].

1at position i

. Mo
Partial Derivative: - ”2' - ﬁ<

m
a0(i) =0 €

MULTIVARIATE CALCULUS REVIEW

Let &; € RY denote the it" standard basis vector,
& =[0,0,1,0,0,...,0].

1at position i

Partial Derivative:

—

of imf(§+€’§i)_f()

i

80() e—0 €

Directional Derivative:

7 _ i [0+ D) — f0)

MULTIVARIATE CALCULUS REVIEW

Gradient: Just a ‘list’ of the partial derivatives.
of

(o) = | 0
£ |(9> o

I [¢ @j

Gradient: Just a ‘list’ of the partial derivatives.
of

20(1)

\V f(ﬂ) _ 00(2)

a0(d)
Directional Derivative in Terms of the Gradient: NE [I | L, }/g
el0) = .90 5w oF
(e = PN - C0)

do} prslot

FUNCTION ACCESS

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(#) for any 6.

Gradient Evaluation: Can compute V£(6) for any 6.
e

14

FUNCTION ACCESS

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(9) for any 6.

Gradient Evaluation: Can compute Vi () for any 6.

In neural networks:

- Function evaluation is called a forward pass (propogate an
input through the network).

- Gradient evaluation is called a backward pass (compute the
gradient via chain rule, using backpropagation).

14

GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let 6@ = 0= + v, where 7 is a
(small) ‘step size’ and Vis a direction chosen to minimize
ﬂﬁ“”+nﬂ~

®(6")

GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §) = 9U=" 4 ¥ where n is a
(small) ‘step size’ and Vis a direction chosen to minimize
O +).

D, f) = lim f6+ v —f(0)

—0 €

<i

GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §) = 9U=" 4 ¥ where n is a
(small) ‘step size’ and Vis a direction chosen to minimize
O +).

Dy f#-) = fim JE 2 V) — B

e—0 €

GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §) = 9U=" 4 ¥ where n is a
(small) ‘step size’ and Vis a direction chosen to minimize
O +).

Dy f#-1) = fim TE " V) — B0

e—0 €

So for small n:

70y — f(@i-Dy = i G
fO7) =07 7)) = {07 +nv) = fl0"7)

GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §) = 9U=" 4 ¥ where n is a
(small) ‘step size’ and Vis a direction chosen to minimize
O +).

Dy f#-1) = fim TE " V) — B0

e—0 €

So for small n:

FOV) — B0 = OV @) — (VD) ~ - DA)

GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §) = 9U=" 4 ¥ where n is a
(small) ‘step size’ and Vis a direction chosen to minimize
O +).

Dy f#-1) = fim TE " V) — B0

e—0 €

So for small n:

FBV) — F(U1) = F(BU + @) — F(OUD) - Def(8V-)
T amae = - 7, VAOU)).

-V (67

GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §) = 9U=" 4 ¥ where n is a
(small) ‘step size’ and Vis a direction chosen to minimize
O +).

Dy f#-1) = fim TE " V) — B0

e—0 €

So for small n:

FOV) — ED) = OV @) — (VD) ~ oy DA(U)
=1 (7, V')

We want to choose V minimizing (v, VA(U=")) - i.e, pointing in the
direction of V(#U=") but with the opposite sign.

GRADIENT DESCENT PSUEDOCODE

.ﬁ
i 1) < madt E
Gradient Descent F—Zé*)) réﬂﬂ
- Choose some mltlallzatlon e _3
- Fori=1,...,t r V 9

. o) = gli-1) _ nvf(“’(c 1))

- Return 61, as an approximate minimizer of f(6).

Step size n is chosen ahead of time or adapted during the
algorithm (details to come.)

16

GRADIENT DESCENT PSUEDOCODE

Gradient Descent

- Choose some initialization 69,
- Fori=1,...,t
- g0 = gu=1 — el

- Return 61, as an approximate minimizer of f(6).

Step size n is chosen ahead of time or adapted during the
algorithm (details to come.)

- For now assume 7 stays the same in each iteration.

16

WHEN DOES GRADIENT DESCENT WORK?

£©
beR VAO)ER

A &[,9 * B‘b y
cocvoe oo/

Gradient Descent Update: §,+1 =6 — //Tf(@)
— S~

17

CONVEXITY

Definition — Convex Function: A function f: RY — R is convex

if and only if, for any 6,6, € R? and X € [0,1]: A= o
g A2, ——
(1=2)-f8) +2-fE) 27 ((1-2) -0 +2- &)
. J2) =
Sp\,\c\,‘\.aé -
) 6\)@/\1&)'5

18

CONVEXITY

Corollary - Convex Function: A function f: R? — R is convex if
and only if, for any 6,6, € RY and X € [0,1]:

[-2 96y (5 -4)

S ~_—

d‘ 19

CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, if the step size n is
chosen appropriately, gradient descent will converge to a
approximate minimizer Laks\g/ith:

f(B) < f(6.) + ¢ = mginf(é) +e.

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMS,...

20

CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, if the step size n is

chosen appropriately, gradient descent will converge to a
approximate minimizer @ with:

f(B) < f(6.) + ¢ = mginf(é) +e

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMS,...

Non-Convex Functions: After sufficient iterations, gradient descent
will converge to a approximate stationary point 8 with:

‘r\%/\/ ui\;<e

CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, if the step size n is
chosen appropriately, gradient descent will converge to a
approximate minimizer @ with:

f(B) < f(6.) + ¢ = mginf(é) +e.

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMS,...

Non-Convex Functions: After sufficient iterations, gradient descent
will converge to a approximate stationary point d with:

IVA@)]2 < e.

Examples: neural networks, clustering, mixture models.

20

LIPSCHITZ FUNCTIONS

0eER VfB)ER
s &‘ f
v
’ Gradient Descent Update:

f(0) Oipr = 6 — nVA(0)
' N

c®), , V“”‘\] {""3’“

21

LIPSCHITZ FUNCTIONS

0eER VfB)ER
A l 5’01"&@
bo - Lipd

\ f(6)

e

v 9*

Gradient Descent Update:
i =0 — nVI(0)

For fast convergence, need to assume that the function is
& Lipschitz (size of gradient is bounded): There is some G sit.:

Vo : |VO)|. <G V6,6,

f(67) = f(65)] < G- (|67 — s>

21

Gradient Descent analysis for convex, Lipschitz functions.

22

