COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2020. Lecture 19

LOGISTICS

· Week 10 Quiz is due Monday at 8pm.

Last Class: Spectral Graph Theory

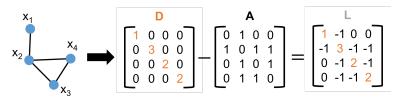
- · View of a graph in terms of adjacency matrix and Laplacian.
- · Spectral embedding for non-linear dimensionality reduction.
- Start on graph clustering for community detection and non-linear clustering.
- · Idea of finding small cuts that separate large sets of nodes.

This Class: Spectral Clustering and the Stochastic Block Model

- Spectral clustering: finding good cuts via Laplacian eigenvectors.
- Stochastic block model: A simple clustered graph model where we can prove the effectiveness of spectral clustering.

THE LAPLACIAN VIEW

For a graph with adjacency matrix **A** and degree matrix **D**, L = D - A is the graph Laplacian.



For any vector \vec{v} , its 'smoothness' over the graph is given by:

$$\sum_{(i,j)\in E} (\vec{v}(i) - \vec{v}(j))^2 = \vec{v}^T L \vec{v}.$$

THE LAPLACIAN VIEW

For a cut indicator vector $\vec{v} \in \{-1, 1\}^n$ with $\vec{v}(i) = -1$ for $i \in S$ and $\vec{v}(i) = 1$ for $i \in T$:

1.
$$\vec{v}^T L \vec{V} = \sum_{(i,j) \in E} (\vec{v}(i) - \vec{v}(j))^2 = 4 \cdot cut(S,T).$$

2.
$$\vec{v}^T \vec{1} = |V| - |S|$$
.

Want to minimize both $\vec{v}^T \mathbf{L} \vec{v}$ (cut size) and $\vec{v}^T \mathbf{1}$ (imbalance).

Next Step: See how this dual minimization problem is naturally solved (sort of) by eigendecomposition.

SMALLEST LAPLACIAN EIGENVECTOR

The smallest eigenvector of the Laplacian is:

$$\vec{\mathbf{v}}_n = \frac{1}{\sqrt{n}} \cdot \vec{\mathbf{1}} = \underset{\mathbf{v} \in \mathbb{R}^n \text{ with } ||\vec{\mathbf{v}}|| = 1}{\operatorname{arg\,min}} \vec{\mathbf{v}}^T \mathbf{L} \vec{\mathbf{V}}$$

with eigenvalue $\vec{v}_n^T \mathbf{L} \vec{v}_n = 0$. Why?

n: number of nodes in graph, $\mathbf{A} \in \mathbb{R}^{n \times n}$: adjacency matrix, $\mathbf{D} \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $\mathbf{L} \in \mathbb{R}^{n \times n}$: Laplacian matrix $\mathbf{L} = \mathbf{A} - \mathbf{D}$.

SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, the second smallest eigenvector is given by:

$$\vec{\mathbf{V}}_{n-1} = \underset{\mathbf{v} \in \mathbb{R}^n \text{ with } ||\vec{\mathbf{v}}|| = 1, \ \vec{\mathbf{v}}_n^T \vec{\mathbf{v}} = 0}{\text{arg min}} \vec{\mathbf{v}}^T \mathbf{L} \vec{\mathbf{V}}$$

If \vec{v}_{n-1} were in $\left\{-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right\}^n$ it would have:

- $\vec{v}_{n-1}^T L \vec{v}_{n-1} = \frac{4}{\sqrt{n}} \cdot cut(S,T)$ as small as possible given that $\vec{v}_{n-1}^T \vec{v}_n = \frac{1}{\sqrt{n}} \vec{v}_{n-1}^T \vec{1} = \frac{|T| |S|}{n} = 0.$
- I.e., \vec{v}_{n-1} would indicate the smallest perfectly balanced cut.
- The eigenvector $\vec{v}_{n-1} \in \mathbb{R}^n$ is not generally binary, but still satisfies a 'relaxed' version of this property.

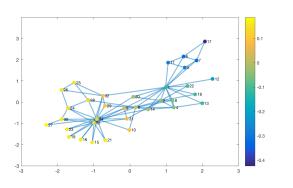
n: number of nodes in graph, $\mathbf{A} \in \mathbb{R}^{n \times n}$: adjacency matrix, $\mathbf{D} \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $\mathbf{L} \in \mathbb{R}^{n \times n}$: Laplacian matrix $\mathbf{L} = \mathbf{A} - \mathbf{D}$. S, T: vertex sets on different sides of cut.

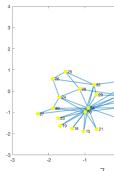
CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

$$\vec{V}_2 = \underset{v \in \mathbb{R}^d \text{ with } ||\vec{v}||=1, \ \vec{v}_2^T \vec{1} = 0}{\text{arg min}} \vec{v}^T \mathbf{L} \vec{V}$$

Set S to be all nodes with $\vec{v}_2(i) < 0$, T to be all with $\vec{v}_2(i) \ge 0$.

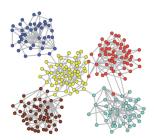




SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?



Spectral Clustering:

• Compute smallest k nonzero eigenvectors $\vec{V}_{n-1} = \vec{V}_{n-k}$ of \vec{I}

LAPLACIAN EMBEDDING

The smallest eigenvectors of $\mathbf{L} = \mathbf{D} - \mathbf{A}$ give the orthogonal 'functions' that are smoothest over the graph. I.e., minimize

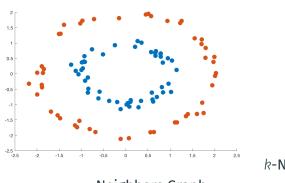
$$\vec{\mathbf{v}}^T \mathbf{L} \vec{\mathbf{v}} = \sum_{(i,j) \in E} [\vec{\mathbf{v}}(i) - \vec{\mathbf{v}}(j)]^2.$$

Embedding points with coordinates given by $[\vec{v}_{n-1}(j), \vec{v}_{n-2}(j), \dots, \vec{v}_{n-k}(j)]$ ensures that coordinates connected by edges have minimum total squared Euclidean distance.

- · Spectral Clustering
- · Laplacian Eigenmaps
- Locally linear embedding
- · Isomap
- Node2Vec, DeepWalk, etc. (variants on Laplacian)

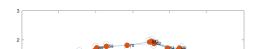
LAPLACIAN EMBEDDING

Original Data: (not linearly separable)



k-Nearest

Neighbors Graph:



GENERATIVE MODELS

So Far: Have argued that spectral clustering partitions a graph effectively, along a small cut that separates the graph into large pieces. But it is difficult to give any formal guarantee on the 'quality' of the partitioning in general graphs.

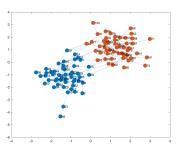
Common Approach: Give a natural generative model for random inputs and analyze how the algorithm performs on inputs drawn from this model.

 Very common in algorithm design for data analysis/machine learning (can be used to justify least squares regression, k-means clustering, PCA, etc.)

STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model): Let $G_n(p,q)$ be a distribution over graphs on n nodes, split randomly into two groups B and C, each with n/2 nodes.

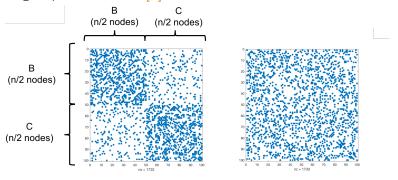
- Any two nodes in the same group are connected with probability *p* (including self-loops).
- Any two nodes in different groups are connected with prob. q < p.
- · Connections are independent.



LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from $G_n(p,q)$.

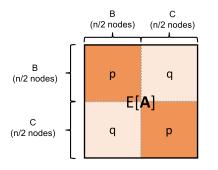
• Let $A \in \mathbb{R}^{n \times n}$ be the adjacency matrix of G, ordered in terms of group ID. What is $\mathbb{E}[A]$?



 $G_n(p,q)$: stochastic block model distribution. B,C: groups with n/2 nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.

EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i,j} = p$ for i,j in same group, $(\mathbb{E}[\mathbf{A}])_{i,j} = q$ otherwise.



What is $\operatorname{rank}(\mathbb{E}[A])$? What are the eigenvectors and eigenvalues of $\mathbb{E}[A]$?

 $G_n(p,q)$: stochastic block model distribution. B,C: groups with n/2 nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.