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LOGISTICS

- Week 10 Quiz is due Monday at 8pm.



SUMMARY

Last Class: Spectral Graph Theory

- View of a graph in terms of adjacency matrix and Laplacian.
+ Spectral embedding for non-linear dimensionality reduction.

- Start on graph clustering for community detection and non-linear
clustering.

- Idea of finding small cuts that separate large sets of nodes.
This Class: Spectral Clustering and the Stochastic Block Model

- Spectral clustering: finding good cuts via Laplacian eigenvectors.

- Stochastic block model: A simple clustered graph model where we
can prove the effectiveness of spectral clustering.



THE LAPLACIAN VIEW

For a graph with adjacency matrix A and degree matrix D,L=D —A is
the graph Laplacian.
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For any vector v, its ‘smoothness’ over the graph is given by:
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THE LAPLACIAN VIEW

For a cut indicator vector Ve {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

1 VIV = 3 jyee(V(0) = V())? = & - cut(S, T).
2. V1T =|V|—S|
Want to minimize both V'LV (cut size) and v¥'1 (imbalance).

Next Step: See how this dual minimization problem is
naturally solved (sort of) by eigendecomposition.



SMALLEST LAPLACIAN EIGENVECTOR

The smallest eigenvector of the Laplacian is:
- 1T - . I
Vp=—=-1= argmin V'LV
vn vER™ with [|7]|=1

with eigenvalue VLV, = 0. Why?

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"%": diagonal
degree matrix, L € R"*": Laplacian matrix L= A — D.




SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, the second smallest eigenvector is given by:

Vo1 = argmin VaRY
vERN with ||V||=1, V,v=0

n
If V,_1 were in {—i i} it would have:

v
* VpoalVnor = % - cut(S,T) as small as possible given that
VTV, = vl 7= =8l

n
- l.e., Vo_; would indicate the smallest perfectly balanced cut.

- The eigenvector V,_; € R" is not generally binary, but still
satisfies a ‘relaxed’ version of this property.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"X": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

—

V) = argmin VLV
veRdwith ||7]|=1, V] 1=0

Set S to be all nodes with V,(i) < 0, T to be all with v, (i) > 0.
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SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~'/2LD~"/2,

Important Consideration: What to do when we want to split
the graph into more than two parts?
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Spectral Clustering:

. Compiite cmallest b nonzero eicenvectors v.. . v, ofl



LAPLACIAN EMBEDDING

The smallest eigenvectors of L = D — A give the orthogonal
‘functions’ that are smoothest over the graph. l.e., minimize

VLY = Z[v ) = V(j

(ij)eE
Embedding points with coordinates given by
Vo—1()), Va—2(j), - - -, Va_r(j)] €nsures that coordinates connected by

edges have minimum total squared Euclidean distance.

- Spectral Clustering

- Laplacian Eigenmaps

* Locally linear embedding
* Isomap

- Node2Vec, DeepWalk, etc.
(variants on Laplacian)




LAPLACIAN EMBEDDING

Original Data: (not linearly separable)
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GENERATIVE MODELS

So Far: Have argued that spectral clustering partitions a graph
effectively, along a small cut that separates the graph into
large pieces. But it is difficult to give any formal guarantee on
the ‘quality’ of the partitioning in general graphs.

Common Approach: Give a natural generative model for
random inputs and analyze how the algorithm performs on
inputs drawn from this model.

- Very common in algorithm design for data analysis/machine
learning (can be used to justify least squares regression,
k-means clustering, PCA, etc.)
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STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model): Let G,(p, q) be a
distribution over graphs on n nodes, split randomly into two groups
B and C, each with n/2 nodes.

- Any two nodes in the same group are connected with probability p
(including self-loops).
- Any two nodes in different groups are connected with prob. g < p.

- Connections are independent.




LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from G,(p, q).

- Let A € R"*" be the adjacency matrix of G, ordered in terms

of group ID. What Is E[A]?

B C
(n/2 nodes)  (n/2 nodes)
1 1

B —
(n/2 nodes)

C
(n/2 nodes)

Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.
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EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R™" be its adjacency matrix. (E[A]);; = p for
I,j in same group, (E[A]);; = g otherwise.

B C
(n/2 nodes)  (n/2 nodes)
[ What is rank(E[A])? What
(/2 ,ﬁ,des) . p q are the eigenvectors and
i E[A] eigenvalues of E[A]?
C
(n/2 nodes) ] q p

Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group. 1%




