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LOGISTICS

- Week 10 Quiz is due Monday at 8pm.



SUMMARY

Last Class: Spectral Graph Theory

\

* View of a graph in terms of adjacency matrix and La)‘placian. !

+ Spectral embedding for non-linear dimensionality reduction.

- Start on graph clustering for community detection and non-linear
clustering.

- Idea of finding small cuts that separate large sets of nodes.



SUMMARY

Last Class: Spectral Graph Theory

- View of a graph in terms of adjacency matrix and Laplacian.
+ Spectral embedding for non-linear dimensionality reduction.

- Start on graph clustering for community detection and non-linear
clustering.

- Idea of finding small cuts that separate large sets of nodes.
This Class: Spectral Clustering and the Stochastic Block Model

* Spectral clustering: finding good cuts via Laplacian eigenvectors.

- Stochastic block model: A simple clustered graph model where we
can prove the effectiveness of spectral clustering.



THE LAPLACIAN VIEW

For a graph with adjacency matrix A and degree matrix D, L=D — A is
the graph Laplacian.
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THE LAPLACIAN VIEW

For a cut indicator vector v e {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

1 VLY = 3 yee (Vi) = V(j))? = 4 - cut(S, 7).
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andV(i)=1forieT o

1 VIV = 3 e (Vi) = V()))? = 4 - cut(S,T), o

2. 7T =TM-s| % i
[ \J\I:Z\/('@ o’

| 0

!
l



THE LAPLACIAN VIEW

For a cut indicator vector V € {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

1 VIV = 3 e (Vi) = V()))? = 4 - cut(S,T),
2. V1T =1|V| -S|

Want to minimize both V7LV (cut size) and v¥'T (imbalance).



THE LAPLACIAN VIEW

For a cut indicator vector V € {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

L .
$ 1L = e (00) — W) = 4-cuts, D). e ofF ot
27T=V =Sl (Aselonca)

Want to minimize both V7LV (cut size) and v¥'T (imbalance).

Next Step: See how this dual minimization problem is
naturally solved (sort of) by eigendecomposition.



SMALLEST LAPLACIAN EIGENVECTOR
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D.




SECOND SMALLEST LAPLACIAN EIGENVECTOR

V. = /*'f’"l
~" L
By Courant-Fischer, the second smallest eigenvector is given by:

Vo1 = arg min VLV
VERN with [|7]|=1, 7]7=0

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, the second smallest eigenvector is given by:

t Vo1 = arg min VLV

VERN with [[7]|=1, 77=0
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D. S, T: vertex sets on

different sides of cut.
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By Courant-Fischer, the second smallest eigenvector is given by:

Vo1 = arg min VLV
veR" with ||V||=1, V,V=0
If V,_1 were in {—ﬁ, ﬁ} it would have:
© VpalVpo1 = = - cut(S,T) as small as possible given that
VT Up=—iT_ T7=1Bl—¢

- e, Vg would |nd|cate the smallest perfectly balanced cut.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, the second smallest eigenvector is given by:

Vo1 = arg min VLV
veR" with ||V]|=1, V,V=0

n
If V,_1 were in {— ! i} it would have:

N
n n
Vo 4LVp_q = \‘*f cut(S,T) as small as possible given that
VT Up=—iT_ T7=1Bl—9

- e, Vg would indicate the smallest perfectly balanced cut.
- The eigenvector V,_1 € R" is not generally binary, but still
satisfies a ‘relaxed’ version of this property.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

Vo= argmin VLV
veRdwith [|7]|=1, V=0

Set S to be all nodes with Vg(j) < 0, T to be all with va(i) > 0.



CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

T,
Find a good partition of the graph by computing Vo 10

[a)
Vo= argmin VLV ?\:W, =90
veRdwith [[7]|=1, 11]=0 i

Set S to be all nodes with 3(i) < 0, T to be all with (i) > 0
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CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

v, = argmin VLV
veRdwith ||7]|=1, V}T=0

Set S to be all nodes with V,(i) < 0, T to be all with V,(i) > 0.




SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the

normalized Laplacian L= D~"/2LD~"/2,
/’_\ — —

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D.




SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

Important Consideration: What to do when we want to split
the graph into more than two parts?
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D.




SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

Important Consideration: What to do when we want to split
the graph into more than two parts?

Spectral Clustering:

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"%": Laplacian matrix L = A — D. 8




SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

Important Consideration: What to do when we want tosplit

the graph into more than two parts - -
n Va-y "\II\'K

Spectral Clustering:

- Compute smallest k nonzero eigenvectors Vy_1, ..., V,_p of L.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"%": Laplacian matrix L = A — D. 8




SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

Important Consideration: What to do when we want to spllt
the graph into more than two parts? =
n
. Vv
Spectral Clustering:
- Compute smallest k nonzero eigenvectors Vy_1, ..., V,_p of L.
. Represg\nt each node by its corresponding row in V € R7*k

whose Towb are Va1, ... Vn_p.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"%": Laplacian matrix L = A — D. 8




SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

Important Consideration: What to do when we want to split
the graph into more than two parts?

Spectral Clustering:

- Compute smallest k nonzero eigenvectors Vy_1, ..., V,_p of L.

- Represent each node by its corresponding row in V € R7*k
whose rows are Vp_1,...V,_p.

- Cluster these rows using k-means clustering (or really any
clustering method).

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"%": Laplacian matrix L = A — D. 8




LAPLACIAN EMBEDDING

. . r
The smallest eigenvectors of L = D — A give the orthogonal \ L\/
‘functions’ that are smoothest over the graph. l.e, minimize
=" ) — V()1



LAPLACIAN EMBEDDING

The smallest eigenvectors of L = D — A give the orthogonal
‘functions’ that are smoothest over the graph. l.e, minimize
VL = ) [(0) = V()P
(i,))eE
Embedding points with coordinates given by
ey [Va_1(), Vn—2(j), - - -, Va_r(j)] ensures that coordinates connected by
edges have minimum total squared Euclidean distance. 2
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LAPLACIAN EMBEDDING

The smallest eigenvectors of L = D — A give the orthogonal
‘functions’ that are smoothest over the graph. l.e, minimize

V=3 ) - W)
(i,j)eE
Embedding points with coordinates given by
[Va_1(), Vn—2(j), - - -, Va_r(j)] ensures that coordinates connected by

edges have minimum total squared Euclidean distance.

+ Spectral Clustering

- Laplacian Eigenmaps

- Locally linear embedding
+ Isomap

- Node2Vec, DeepWalk, etc.
(variants on Laplacian)




LAPLACIAN EMBEDDING
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Original Data: (not linearly separable)
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LAPLACIAN EMBEDDING

3

k-Nearest Neighbors Graph:
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LAPLACIAN EMBEDDING

Embedding with eigenvectors vV,,_1,V,_,: (linearly separable)
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GENERATIVE MODELS

So Far: Have argued that spectral clustering partitions a graph
effectively, along a small cut that separates the graph into
large pieces. But it is difficult to give any formal guarantee on
the ‘quality’ of the partitioning in general graphs.



GENERATIVE MODELS

So Far: Have argued that spectral clustering partitions a graph
effectively, along a small cut that separates the graph into
large pieces. But it is difficult to give any formal guarantee on
the ‘quality’ of the partitioning in general graphs.

Common Approach: Give a natural generative model for
random inputs and analyze how the algorithm performs on
inputs drawn from this model.

- Very common in algorithm design for data analysis/machine
learning (can be used to justify least squares regression,
k-means clustering, PCA, etc.)



STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model): Let G,(p, q) be a
distribution over graphs on n nodes, split randomly into two groups
B and C, each with n/2 nodes.



STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model): Let G,(p, q) be a
distribution over graphs on n nodes, split randomly into two groups
B and C, each with n/2 nodes. o=
o s
+ Any two nodes in the same group are connected with probability p
(including self-loops).

+ Any two nodes in different groups are connected with prob. g < p.

- Connections are independent. E“DS



STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model): Let G,(p, q) be a

distribution over graphs on n nodes, split randomly into two groups
B and C, each with n/2 nodes.

+ Any two nodes in the same group are connected with probability p
(including self-loops).

+ Any two nodes in different groups are connected with prob. g < p.
- Connections are independent.




LINEAR ALGEBRAIC VIEW

,Edoy WY
Let G be a stochastic block model graph drawn from Gu(p, q).

- Let A € R"*" be the adjacency matrix of G, ordered in terms

of group ID.
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Gn(p, q): stochastic block model distribution. B,C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.




LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from Gu(p, q).

- Let A € R"*" be the adjacency matrix of G, ordered in terms
of group ID.

B Cc
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Cc
(n/2 nodes) 7

Gn(p, q): stochastic block model distribution. B,C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.




LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from Gu(p, q).

- Let A € R™" be the adjacency matrix of G, ordered in terms
of group ID. What is B[A]? —Yaock M=% E[ﬁ\jl Tl O ()
B C 1eb -9

(n/2 nodes)  (n/2 nodes)
L A

B —
(n/2 nodes)

Cc
(n/2 nodes) 7

Gn(p, q): stochastic block model distribution. B,C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.




EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from

Gn(p,q) and A € R™" be its adjacency matrix. (E[A]);; = p for

I,j in same group, (E[A]);; = g otherwise.

B C
(n/2 nodes)  (n/2 nodes)
_ I . T ) 1
B —
(n/2 nodes) P q
r E[A]
C
(n/2 nodes) q p

Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.
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EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R™" be its adjacency matrix. (E[A]);; = p for
I,j in same group, (E[A]);; = g otherwise.

B C
(n/2 nodes)  (n/2 nodes)

r T 1

[ What is rank(EE[A])? What
(/2 :‘Ldes) 7 p q are the eigenvectors and
L E[A] eigenvalues of E[A]?
\
C
(n/2 nodes) 7 q P

Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group. 1%




