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LOGISTICS

- Problem Set 3 was due yesterday.

- Solutions have been posted.
- There was no quiz due this week. Will have one due next

Monday as usual.



SUMMARY

Last Class: Applications of Low-Rank Approximation

- Low-rank matrix completion (predicting missing
measurements using low-rank structure).

- Entity embeddings (e.g., LSA, word embeddings). View as
low-rank approximation of a similarity matrix.

Spectral Graph Theory & Spectral Clustering.

- Low-rank approximation on graph adjacency matrix for
non-linear dimensionality reduction.

- Eigendecomposition to partition graphs into clusters.

- Application to the stochastic block model and community
detection.



NON-LINEAR DIMENSIONALITY REDUCTION




LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points xq,...,x, into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A € R™" with A;; = edge weight between nodes i and j
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In LSA example, when X is the term-document matrix, X'X is like an
adjacency matrix, where word, and word,, are connected if they
appear in at least 1 document together (edge weight is # documents
they appear in together).



NORMALIZED ADJACENCY MATRIX
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What is the sum of entries in the it column of A? The
(weighted) degree of vertex i.

Often, A is normalized as A = D~"/2AD~"/2 where D is the
degree matrix.

Spectral graph theory is the field of representing graphs as
matrices and anplvine linear alesebraic techniaues.



ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of A?

- Project onto the top k eigenvectors of ATA = A%. These are
just the eigenvectors of A.

- Similar vertices (close with regards to graph proximity)
should have similar embeddings.



SPECTRAL EMBEDDING

What other methods do you
know for embedding or
representing data points with
non-linear structure?




SPECTRAL CLUSTERING

A very common task is to partition or cluster vertices in a
graph based on similarity/connectivity.

Community detection in naturally occurring networks.




CUT MINIMIZATION

Simple Idea: Partition clusters along minimum cut in graph.
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(a) Zachary Karate Club Graph (a) Zachary Karate Club Graph
Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

Let Ve R" be a cut indicator: V(i) =1ifi € S. V(i) = —-1ifi e T.
Want v to have roughly equal numbers of 1s and —1s. l.e,, V1 ~ 0.



THE LAPLACIAN VIEW

For a graph with adjacency matrix A and degree matrix D,L=D —Ais
the graph Laplacian.
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For any vector V, its ‘smoothness’ over the graph is given by:

S (@) - W) = VL.



THE LAPLACIAN VIEW

For a cut indicator vector Ve {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

1 VIV = 3 jyee(V(0) = V(7)) = 4 - cut(S, T).
2. V1T =|V|—S|.

Want to minimize both V'LV (cut size) and v¥'1 (imbalance).

Next Step: See how this dual minimization problem is
naturally solved by eigendecomposition.
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