COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.

Lecture 18

LOGISTICS

- · Problem Set 3 was due yesterday.
- · Solutions have been posted.
- There was no quiz due this week. Will have one due next Monday as usual.

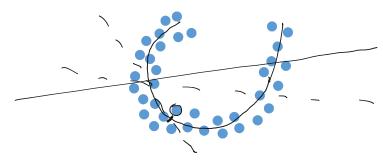
Last Class: Applications of Low-Rank Approximation

- Low-rank matrix completion (predicting missing measurements using low-rank structure).
- Entity embeddings (e.g., LSA, word embeddings). View as low-rank approximation of a similarity matrix.

Spectral Graph Theory & Spectral Clustering.

- Low-rank approximation on graph adjacency matrix for non-linear dimensionality reduction.
- · Eigendecomposition to partition graphs into clusters.
- Application to the stochastic block model and community detection.

NON-LINEAR DIMENSIONALITY REDUCTION

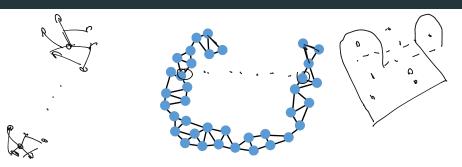


Is this set of points compressible? Does it lie close to a low-dimensional subspace? (A 1-dimensional subspace of \mathbb{R}^{2} .)

NON-LINEAR DIMENSIONALITY REDUCTION

Is this set of points compressible? Does it lie close to a low-dimensional subspace? (A 1-dimensional subspace of \mathbb{R}^d .)

NON-LINEAR DIMENSIONALITY REDUCTION



Is this set of points compressible? Does it lie close to a low-dimensional subspace? (A 1-dimensional subspace of \mathbb{R}^d .)

A common way of automatically identifying this non-linear structure is to connect data points in a graph. E.g., a k-nearest neighbor graph.

• Connect items to similar items, possibly with higher weight edges when they are more similar.

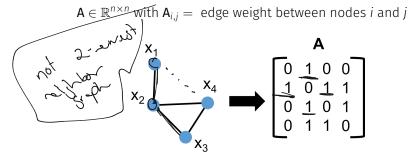
LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points x_1, \ldots, x_n into a graph, we can represent that graph by its (weighted) adjacency matrix.

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i,j} =$ edge weight between nodes i and j

LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

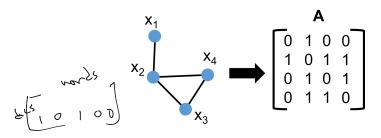
Once we have connected n data points x_1, \ldots, x_n into a graph, we can represent that graph by its (weighted) adjacency matrix.



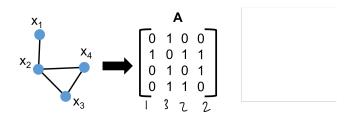
LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points x_1, \ldots, x_n into a graph, we can represent that graph by its (weighted) adjacency matrix.

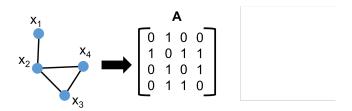
 $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i,j} = \text{ edge weight between nodes } i \text{ and } j$



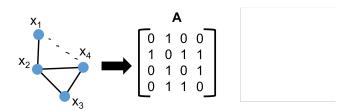
In LSA example, when \mathbf{X} is the term-document matrix, $\mathbf{X}^T\mathbf{X}$ is like an adjacency matrix, where $word_a$ and $word_b$ are connected if they appear in at least 1 document together (edge weight is # documents they appear in together).



What is the sum of entries in the *i*th column of A?

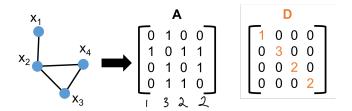


What is the sum of entries in the *i*th column of *A*? The (weighted) degree of vertex *i*.



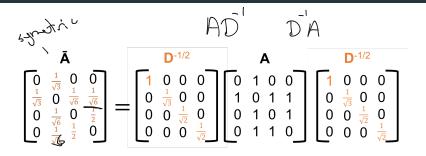
What is the sum of entries in the *i*th column of *A*? The (weighted) degree of vertex *i*.

Often, **A** is normalized as $\bar{\bf A}={\bf D}^{-1/2}{\bf A}{\bf D}^{-1/2}$ where **D** is the degree matrix.



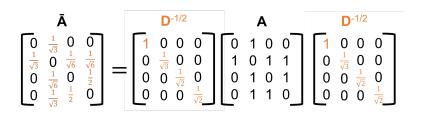
What is the sum of entries in the *i*th column of A? The (weighted) degree of vertex *i*.

Often, **A** is normalized as $\bar{\mathbf{A}} = \mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}$ where **D** is the degree matrix.



What is the sum of entries in the *i*th column of A? The (weighted) degree of vertex *i*.

Often, **A** is normalized as $\underline{\bar{\bf A}} = {\bf D}^{-1/2} {\bf A} {\bf D}^{-1/2}$ where **D** is the degree matrix.



What is the sum of entries in the *i*th column of A? The (weighted) degree of vertex *i*.

Often, ${\bf A}$ is normalized as ${\bf \bar A}={\bf D}^{-1/2}{\bf A}{\bf D}^{-1/2}$ where ${\bf D}$ is the degree matrix.

Spectral graph theory is the field of representing graphs as matrices and applying linear algebraic techniques.

ADJACENCY MATRIX EIGENVECTORS

(メ大) ~ # Locs たい しゅうし word ppen in How do we compute an optimal low-rank approximation of A?

• Project onto the top k eigenvectors of $A^TA = A^2$. These are just the eigenvectors of A. ~ VK/KVK $\langle y(i), z(j) \rangle \approx 1$ $\langle y(i), z(j) \rangle \approx 1$

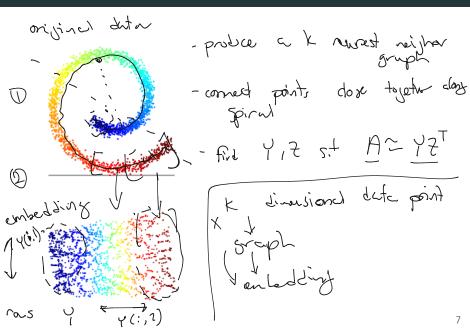
ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of A?

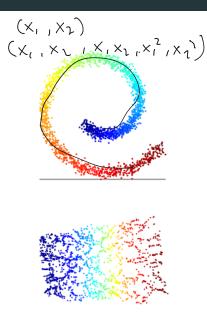
• Project onto the top k eigenvectors of $\mathbf{A}^T \mathbf{A} = \mathbf{A}^2$. These are just the eigenvectors of \mathbf{A} .

• Similar vertices (close with regards to graph proximity) should have similar embeddings.

SPECTRAL EMBEDDING



SPECTRAL EMBEDDING



What other methods do you know for embedding or representing data points with non-linear structure?

representing data points with non-linear structure?

Kernel methods

randon withs a graph

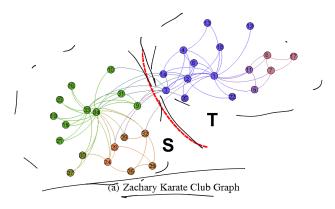
Feature transformations

Deep Walk rode 2 Vec

A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

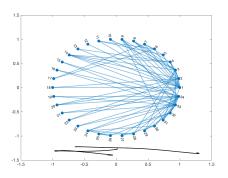
A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Community detection in naturally occurring networks.



A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Community detection in naturally occurring networks.

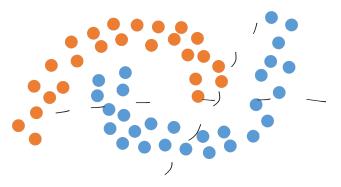


A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Linearly separable data.

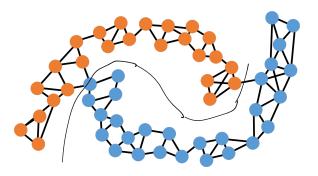
A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Non-linearly separable data k-nearest neighbor graph.



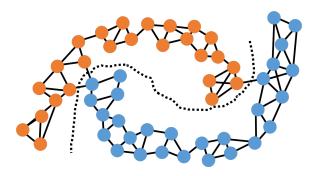
A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Non-linearly separable data k-nearest neighbor graph.



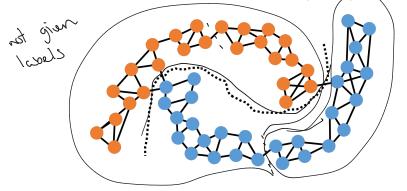
A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Non-linearly separable data k-nearest neighbor graph.



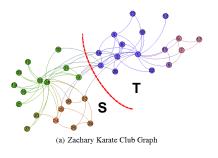
A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Non-linearly separable data k-nearest neighbor graph.

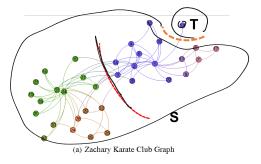


This Class: Find this cut using eigendecomposition. First – motivate why this type of approach makes sense.

Simple Idea: Partition clusters along minimum cut in graph.

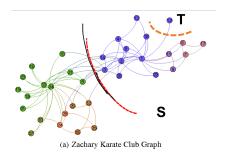


Simple Idea: Partition clusters along minimum cut in graph.



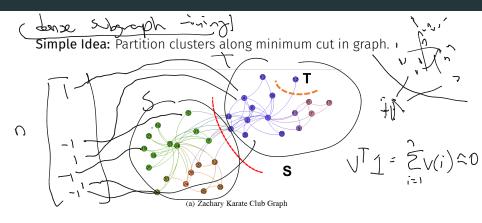
Small cuts are often not informative.

Simple Idea: Partition clusters along minimum cut in graph.



Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

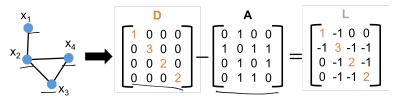


Small cuts are often not informative.

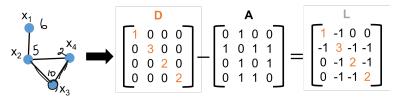
Solution: Encourage cuts that separate large sections of the graph.

• Let $\vec{v} \in \mathbb{R}^n$ be a cut indicator: $\vec{v}(i) = 1$ if $i \in S$. $\vec{v}(i) = -1$ if $i \in T$. Want \vec{v} to have roughly equal numbers of 1s and -1s. I.e., $\vec{v}^T \vec{1} \approx 0$.

For a graph with adjacency matrix **A** and degree matrix **D**, L = D - A is the graph Laplacian.



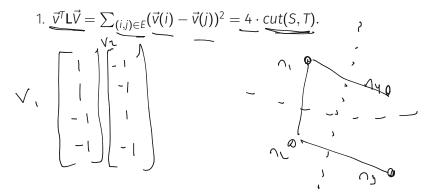
For a graph with adjacency matrix **A** and degree matrix **D**, L = D - A is the graph Laplacian.



For any vector
$$\vec{v}$$
, its 'smoothness' over the graph is given by:
$$\begin{bmatrix} 5 \\ 5 \\ 10 \\ 2 \end{bmatrix} = \vec{v}^T L \vec{v}.$$

$$\begin{bmatrix} (\vec{v}(i) - \vec{v}(j))^2 = \vec{v}^T L \vec{v}. \end{bmatrix} + (5-2)^2 + (5-10)^2 + (10-2)^2$$

For a cut indicator \vec{v} ector $\vec{v} \in \{-1, 1\}^n$ with $\vec{v}(i) = -1$ for $i \in S$ and $\vec{v}(i) = 1$ for $i \in T$:



For a cut indicator vector $\vec{v} \in \{-1, 1\}^n$ with $\vec{v}(i) = -1$ for $i \in S$ and $\vec{v}(i) = 1$ for $i \in T$:

1.
$$\vec{v}^T L \vec{V} = \sum_{(i,j) \in E} (\vec{v}(i) - \vec{v}(j))^2 = 4 \cdot cut(S,T).$$

2.
$$\vec{v}^T \vec{1} = |V| - |S|$$
.

For a cut indicator vector $\vec{v} \in \{-1, 1\}^n$ with $\vec{v}(i) = -1$ for $i \in S$ and $\vec{v}(i) = 1$ for $i \in T$:

1.
$$\vec{v}^T L \vec{V} = \sum_{(i,j) \in E} (\vec{v}(i) - \vec{v}(j))^2 = 4 \cdot cut(S,T).$$

2.
$$\vec{v}^T \vec{1} = |V| - |S|$$
.

Want to minimize both $\vec{v}^T L \vec{v}$ (cut size) and $\vec{v}^T \vec{1}$ (imbalance).

For a cut indicator vector $\vec{v} \in \{-1, 1\}^n$ with $\vec{v}(i) = -1$ for $i \in S$ and $\vec{v}(i) = 1$ for $i \in T$:

1.
$$\vec{v}^T L \vec{V} = \sum_{(i,j) \in E} (\vec{v}(i) - \vec{v}(j))^2 = 4 \cdot cut(S,T).$$

2.
$$\vec{v}^T \vec{1} = |V| - |S|$$
.

Want to minimize both $\vec{v}^T \mathbf{L} \vec{v}$ (cut size) and $\vec{v}^T \vec{1}$ (imbalance).

Next Step: See how this dual minimization problem is naturally solved by eigendecomposition.