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COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.
Lecture 18



LOGISTICS

- Problem Set 3 was due yesterday.

- Solutions have been posted.
- There was no quiz due this week. Will have one due next

Monday as usual.



SUMMARY

Last Class: Applications of Low-Rank Approximation

- Low-rank matrix completion (predicting missing
measurements using low-rank structure).

- Entity embeddings (e.g.,, LSA, word embeddings). View as
low-rank approximation of a similarity matrix.

Spectral Graph Theory & Spectral Clustering.

- Low-rank approximation on graph adjacency matrix for
non-linear dimensionality reduction.

- Eigendecomposition to partition graphs into clusters.
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NON-LINEAR DIMENSIONALITY REDUCTION

Is this set of points compressible? Does it lie close to a
low-dimensional subspace? (A 1-dimensional subspace ofRa“.)
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NON-LINEAR DIMENSIONALITY REDUCTION

Is this set of points compressible? Does it lie close to a
low-dimensional subspace? (A 1-dimensional subspace of R?.)

A common way of automatically identifying this non-linear structure
is to connect data points in a graph. E.g, a(k—nearesf neighbor graph.

-+ Connect items to similar items, possibly with higher weight edges
when they are more similar.



LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points xq,...,x, into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A € R™" with A;; = edge weight between nodes i and j
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LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points xq,...,x, into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A € R™" with A;; = edge weight between nodes i and j

X, A

0100

X, 101 1

s e __ AR

_ 0110
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In LSA example, when X is the term-document matrix, X'X is like an
adjacency matrix, where word, and word,, are connected if they
appear in at least 1 document together (edge weight is # documents
they appear in together).



NORMALIZED ADJACENCY MATRIX

X4 A
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What is the sum of entries in the it column of A?
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What is the sum of entries in the it" column of A? The
(weighted) degree of vertex i.



NORMALIZED ADJACENCY MATRIX
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What is the sum of entries in the it" column of A? The
(weighted) degree of vertex i.

Often, A is normalized as A = D~"/2AD~"/2 where D is the
degree matrix.



NORMALIZED ADJACENCY MATRIX

X, A D
0100 1000
X4 101 1 0300
X2 |5 10 1 0020
0110 0002

X3 32

What is the sum of entries in the it column of A? The
(weighted) degree of vertex i.

Often, A is normalized as A = D=/2AD~1/2 where D is the
degree matrix.



NORMALIZED ADJACENCY MATRIX

v
g FD DA
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0 .00 1o000]|fo1o00]]1000
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What is the sum of entries in the it column of A? The
(weighted) degree of vertex i.

Often, A is normalized as A = D~"/2AD~"/2 where D is the
. \
degree matrix.



NORMALIZED ADJACENCY MATRIX

A D12 A D-12
0 .00 1000][o100][1000
0 _lo-00fl1011]|fo 00
0.0 —loo 0f]o101 00,0
0 0 000 Jlo110]]0o00

What is the sum of entries in the it column of A? The
(weighted) degree of vertex i.

Often, A is normalized as A = D~"/2AD~"/2 where D is the
degree matrix.

Spectral graph theory is the field of representing graphs as
matrices and applying linear algebraic techniques.



ADJACENCY MATRIX EIGENVECTORS
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ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of A?

- Project onto the top k eigenvectors of ATA = A%. These are
just the eigenvectors of A.

- Similar vertices (close with regards to graph proximity)
should have similar embeddings.



SPECTRAL EMBEDDING
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SPECTRAL EMBEDDING
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SPECTRAL CLUSTERING

A very common task is to partition or cluster vertices in a
graph based on similarity/connectivity.
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SPECTRAL CLUSTERING

A very common task is to partition or cluster vertices in a
graph based on similarity/connectivity.
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SPECTRAL CLUSTERING

A very common task is to partition or cluster vertices in a
graph based on similarity/connectivity.

Non-linearly separable data k-nearest neighbor graph.
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SPECTRAL CLUSTERING

A very common task is to partition or cluster vertices in a
graph based on similarity/connectivity.

Non-linearly separable data k-nearest neighbor graph.

This Class: Find this cut using eigendecomposition. First -
motivate why this type of approach makes sense.



CUT MINIMIZATION

Simple Idea: Partition clusters along minimum cut in graph
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(a) Zachary Karate Club Graph
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Small cuts are often not informative.
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Simple Idea: Partition clusters along minimum cut in graph.
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(a) Zachary Karate Club Graph

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.



CUT MINIMIZATION
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imple Idea: Partition clusters along minimum cutin graph.» _\0_ ~

(a) Zachary Karate Club Graph

Small cuts are often not informative.
Solution: Encourage cuts that separate large sections of the graph.

* LetVeR"beacutindicator: V(i) =1ifie S. V(i) =-1ifieT.
Want  to have roughly equal numbers of 1s and —1s. l.e., V1~ 0.




THE LAPLACIAN VIEW

For a graph with adjacency matrix A and degree matrix D,L=D — A is
the graph Laplacian.
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THE LAPLACIAN VIEW
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For a graph with adjacency matrix A and degree matrix D,L=D — A is

the graph Laplacian.

D A
1000 0100 1100
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THE LAPLACIAN VIEW

For a cut indicatdtvector V € {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT
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THE LAPLACIAN VIEW

For a cut indicator vector Vv € {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

1 VLY = 3 e (Vi) = V()))? = 4 - cut(S, 7).
2. V1= V| —1S).
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THE LAPLACIAN VIEW

For a cut indicator vector Vv € {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

1 VLY = 3 e (Vi) = V()))? = 4 - cut(S, 7).

2. V1= V| —1S).

Want to minimize both V'LV (cut size) and v'1 (imbalance).

Next Step: See how this dual minimization problem is
naturally solved by eigendecomposition.



