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LOGISTICS

- Problem Set 3 deadline extended until Monday 10/26, 8pm.
- Week 9 Quiz will now be due Tuesday 10/27, 8pm.



SUMMARY

Last Few Classes: Low-Rank Approximation and PCA
- Compress data that lies close to a k-dimensional subspace.

- Equivalent to finding a low-rank approximation of the data matrix
X: X &~ XW' for orthonormal V e RI*%,

- Optimal solution via PCA (eigendecomposition of X"X or
equivalently, SVD of X).

- Singular vectors of X are the eigenvectors of XX and X"X. Singular
values squared are the eigenvalues.
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- Equivalent to finding a low-rank approximation of the data matrix
X: X &~ XW' for orthonormal V e RI*%,

- Optimal solution via PCA (eigendecomposition of X"X or
equivalently, SVD of X).

* Singular vectors of X are the eigenvectors of XX and X"X. Singular
values squared are the eigenvalues.
This Class: Applications of low-rank approx. beyond compression.
- Matrix completion and collaborative filtering
- Entity embeddings (word embeddings, node embeddings, etc.)
- Low-rank approximation fornon-linear dimensionality reduction.

- Spectral graph theory, spectral clustering.
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Under certain assumptions, can show that Y well approximates X on
both the observed and (most importantly) unobserved entries.
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ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into R
dimensions. But what about when you want to embed objects
other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Usual Approach: Convert each item into a high-dimensional
feature vector and then apply low-rank approximation.
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- If the error ||X — YZT||¢ is small, then on average,
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- le., (Vi,Zy) ~ 1 when doc; contains word,.

- If doc; and doc; both contain wordy, (Vi,Za) =~ (Jj,Za) ~ 1.
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Another View: Each column of Y represents a ‘topic’ y;(j) indicates
how much doc; belongs to topic j. Z,(j) indicates how much word,
associates with that topic.
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- Just like with documents, Z, and Z, will tend to have high dot
product if word, and word, appear in many of the same
documents.
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- The columns of V,, are equivalently: the top k eigenvectors of X'X.
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- Just like with documents, Z, and Z, will tend to have high dot
product if word, and word, appear in many of the same
documents.

- In an SVD decomposition we set ZT = XV}

- The columns of V,, are equivalently: the top k eigenvectors of X'X.
The eigendecomposition of X'X is XX = VE2V'.

- What is the best rank-k approximation of X'X? l.e.
argmin.y _p g |IX'X — BJ|r

- X'X = V,ZpV] =277
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LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X), 1, is
the number of documents that both word, and word, appear in.

- Think about X"X as a similarity matrix (gram matrix, kernel matrix)
with entry (a, b) being the similarity between word, and word,.

* Many ways to measure similarity: number of sentences both occur
in, number of times both appear in the same window of w words,
in similar positions of documents in different languages, etc.

- Replacing X'X with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastText, etc.
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Note: word2vec is typically described as a neural-network
method, but it is really just low-rank approximation of a
specific similarity matrix. Neural word embedding as implicit
matrix factorization, Levy and Goldberg.



