COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.

Lecture 17

LOGISTICS

- · Problem Set 3 deadline extended until Monday 10/26, 8pm.
- · Week 9 Quiz will now be due Tuesday 10/27, 8pm.

Last Few Classes: Low-Rank Approximation and PCA

- · Compress data that lies close to a *k*-dimensional subspace.
- Equivalent to finding a low-rank approximation of the data matrix $\mathbf{X}: \mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^T$ for orthonormal $\mathbf{V} \in \mathbb{R}^{d \times k}$.
- Optimal solution via PCA (eigendecomposition of X^TX or equivalently, SVD of X).
- Singular vectors of **X** are the eigenvectors of **XX**^T and **X**^T**X**. Singular values squared are the eigenvalues.

Last Few Classes: Low-Rank Approximation and PCA

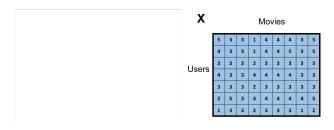
- · Compress data that lies close to a *k*-dimensional subspace.
- Equivalent to finding a low-rank approximation of the data matrix $\mathbf{X}: \mathbf{X} \approx \mathbf{X}\mathbf{V}\mathbf{V}^\mathsf{T}$ for orthonormal $\mathbf{V} \in \mathbb{R}^{d \times k}$.
- Optimal solution via PCA (eigendecomposition of X^TX or equivalently, SVD of X).
- Singular vectors of **X** are the eigenvectors of **XX**^T and **X**^T**X**. Singular values squared are the eigenvalues.

This Class: Applications of low-rank approx. beyond compression.

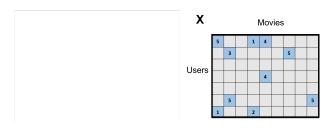
- · Matrix completion and collaborative filtering
- Entity embeddings (word embeddings, node embeddings, etc.)
- · Low-rank approximation fornon-linear dimensionality reduction.
- · Spectral graph theory, spectral clustering.

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix).

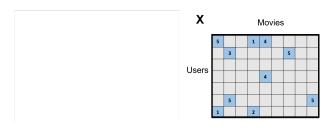
Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.



Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.



Consider a matrix $X \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.



Solve:
$$Y = \underset{\text{rank} - k}{\text{arg min}} \sum_{\text{observed } (j,k)} [X_{j,k} - B_{j,k}]^2$$

Consider a matrix $X \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

									X			ı	Mo	vies	6	
4.9	3.1	3	1.1	3.8	4.1	4.1	3.4	4.6		5		1	4			
3.6	3	3	1.2	3.8	4.2	5	3.4	4.8			3				5	
2.8	3	3	2.3	3	3	3	3	3.2	Heere							
3.4	3	3	4	4.1	4.1	4.2	3	3	Users				4			
2.8	3	3	2.3	3	3	3	3	3.4								
2.2	5	3	4	4.2	3.9	4.4	4	5.3			5					5
1	3.3	3	2.2	3.1	2.9	3.2	1.5	1.8		1		2				

Solve:
$$Y = \underset{\text{rank} - k}{\text{arg min}} \sum_{\text{observed } (j,k)} [X_{j,k} - B_{j,k}]^2$$

Consider a matrix $X \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

,												Movies									
4.9	3.1	3	1.1	3.8	4.1	4.1	3.4	4.6		5			1	4							
3.6	3	3	1.2	3.8	4.2	5	3.4	4.8			3					5					
2.8	3	3	2.3	3	3	3	3	3.2	Llaara									Г			
3.4	3	3	4	4.1	4.1	4.2	3	3	Users					4							
2.8	3	3	2.3	3	3	3	3	3.4										Г			
2.2	5	3	4	4.2	3.9	4.4	4	5.3			5							5			
1	3.3	3	2.2	3.1	2.9	3.2	1.5	1.8		1			2								

Solve:
$$Y = \underset{\text{rank} - k}{\text{arg min}} \sum_{\text{observed } (j,k)} [X_{j,k} - B_{j,k}]^2$$

Under certain assumptions, can show that **Y** well approximates **X** on both the observed and (most importantly) unobserved entries.

Consider a matrix $X \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

									X				ı	Mov	vies	3		
4.9	3.1	3	1.1	3.8	4.1	4.1	3.4	4.6		5	3	3	1	4	4	4	3	5
3.6	3	3	1.2	3.8	4.2	5	3.4	4.8		4	3	3	1	4	4	5	3	5
2.8	3	3	2.3	3	3	3	3	3.2	Ulaana	3	3	3	2	3	3	3	3	3
3.4	3	3	4	4.1	4.1	4.2	3	3	Users	4	3	3	4	4	4	4	3	3
2.8	3	3	2.3	3	3	3	3	3.4		3	3	3	2	3	3	3	3	3
2.2	5	3	4	4.2	3.9	4.4	4	5.3		2	5	3	4	4	4	4	4	5
1	3.3	3	2.2	3.1	2.9	3.2	1.5	1.8		1	3	3	2	3	3	3	1	2

Solve:
$$Y = \underset{\text{rank} - k}{\text{arg min}} \sum_{\text{observed } (j,k)} [X_{j,k} - B_{j,k}]^2$$

Under certain assumptions, can show that **Y** well approximates **X** on both the observed and (most importantly) unobserved entries.

ENTITY EMBEDDINGS

Dimensionality reduction embeds *d*-dimensional vectors into *k* dimensions. But what about when you want to embed objects other than vectors?

ENTITY EMBEDDINGS

Dimensionality reduction embeds *d*-dimensional vectors into *k* dimensions. But what about when you want to embed objects other than vectors?

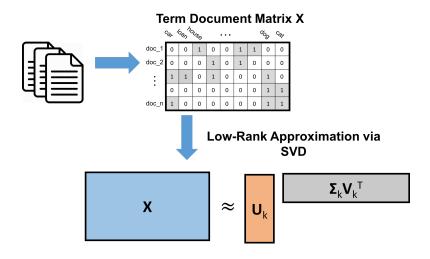
- · Documents (for topic-based search and classification)
- · Words (to identify synonyms, translations, etc.)
- · Nodes in a social network

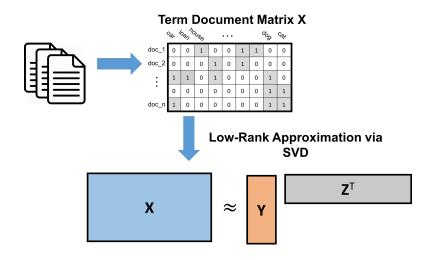
ENTITY EMBEDDINGS

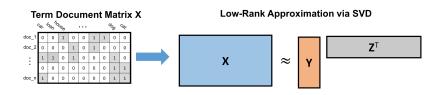
Dimensionality reduction embeds *d*-dimensional vectors into *k* dimensions. But what about when you want to embed objects other than vectors?

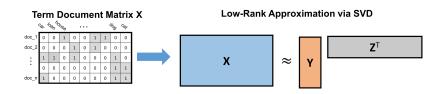
- · Documents (for topic-based search and classification)
- · Words (to identify synonyms, translations, etc.)
- · Nodes in a social network

Usual Approach: Convert each item into a high-dimensional feature vector and then apply low-rank approximation.



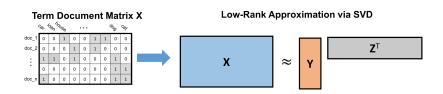






· If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

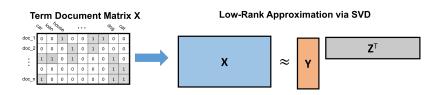
$$\mathbf{X}_{i,a} \approx (\mathbf{Y}\mathbf{Z}^T)_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$



• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

$$X_{i,a} \approx (YZ^T)_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

• I.e., $\langle \vec{y}_i, \vec{z}_a \rangle \approx$ 1 when doc_i contains $word_a$.

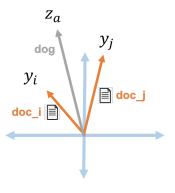


• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

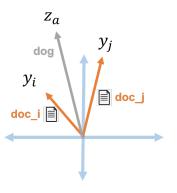
$$X_{i,a} \approx (YZ^T)_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

- I.e., $\langle \vec{y}_i, \vec{z}_a \rangle \approx 1$ when doc_i contains $word_a$.
- If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$.

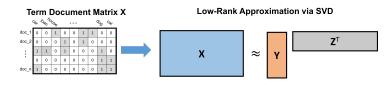
If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$



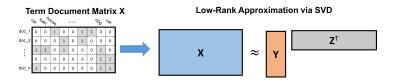
If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$



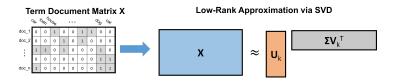
Another View: Each column of Y represents a 'topic'. $\vec{y_i}(j)$ indicates how much doc_i belongs to topic j. $\vec{z_a}(j)$ indicates how much $word_a$ associates with that topic.



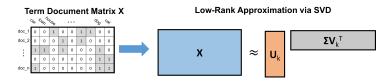
• Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.



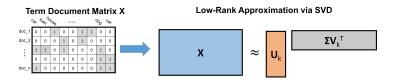
- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- · In an SVD decomposition we set $\mathbf{Z}^T = \mathbf{\Sigma}_k \mathbf{V}_{\mathcal{K}^{.}}^T$
- The columns of V_k are equivalently: the top k eigenvectors of X^TX .



- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- · In an SVD decomposition we set $\mathbf{Z}^T = \mathbf{\Sigma}_k \mathbf{V}_{\mathcal{K}^{.}}^T$
- The columns of V_k are equivalently: the top k eigenvectors of X^TX . The eigendecomposition of X^TX is $X^TX = V\Sigma^2V^T$.



- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- · In an SVD decomposition we set $\mathbf{Z}^T = \mathbf{\Sigma}_k \mathbf{V}_{\mathcal{K}^{.}}^T$
- The columns of V_k are equivalently: the top k eigenvectors of X^TX . The eigendecomposition of X^TX is $X^TX = V\Sigma^2V^T$.
- What is the best rank-k approximation of X^TX ? I.e. $\arg\min_{\text{rank} = k} \|X^TX B\|_F$



- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- · In an SVD decomposition we set $\mathbf{Z}^T = \mathbf{\Sigma}_k \mathbf{V}_{\mathcal{K}^{.}}^T$
- The columns of V_k are equivalently: the top k eigenvectors of X^TX . The eigendecomposition of X^TX is $X^TX = V\Sigma^2V^T$.
- What is the best rank-k approximation of X^TX ? I.e. $\arg\min_{\text{rank}-k} \mathbf{B} \| X^TX \mathbf{B} \|_F$
- $\cdot \mathsf{X}^{\mathsf{T}}\mathsf{X} = \mathsf{V}_{k}\mathbf{\Sigma}_{k}^{2}\mathsf{V}_{k}^{\mathsf{T}} = \mathsf{Z}\mathsf{Z}^{\mathsf{T}}.$

LSA gives a way of embedding words into *k*-dimensional space.

• Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.

LSA gives a way of embedding words into *k*-dimensional space.

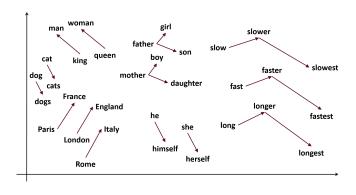
- Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between $word_a$ and $word_b$.

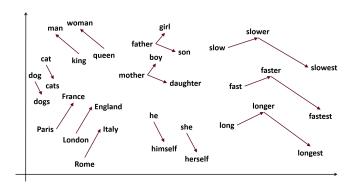
LSA gives a way of embedding words into *k*-dimensional space.

- Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between $word_a$ and $word_b$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.

LSA gives a way of embedding words into *k*-dimensional space.

- Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between $word_a$ and $word_b$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.
- Replacing X^TX with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastText, etc.





Note: word2vec is typically described as a neural-network method, but it is really just low-rank approximation of a specific similarity matrix. *Neural word embedding as implicit matrix factorization*, Levy and Goldberg.