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COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.
Lecture 17



LOGISTICS

@ Q.‘(Sv\y\ ‘o\)\,QJ O’F\ ){Y% —_ SGVMG\,\Q,CJ Sﬂ_,,igl \/"\.\‘LJ
& X

= s VAR '
ey sym. A |
@ 5 qd\]\u/ \,»\\M & A - e 3(())1(\_/\‘&,% .\/P\,\\QL o(j 3y é(/\\q\/-l

- Problem Set 3 deadline extended until Monday 10/26, 8pm.
- Week 9 Quiz will now be due Tuesday 10/27, 8pm. ?
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SUMMARY
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Last Few Classes: Low-Rank Approximation ang’PCA
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t\ X X ~XY {or orthonormal V € RY*k,
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Opt|mal solution via PCA (eigendecomposition of X'X or L § ‘L
equivalently, SVD of X).

- Singular vectors of X are the eigenvectors of XX” and X'X. Singular
values squared are the elgenvalues. D,\/ - b oy
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SUMMARY

Last Few Classes: Low-Rank Approximation and PCA
- Compress data that lies close to a k-dimensional subspace.

- Equivalent to finding a low-rank approximation of the data matrix
X: X =~ XW' for orthonormal V € R¥xk,

- Optimal solution via PCA (eigendecomposition of X'X or
equivalently, SVD of X).

- Singular vectors of X are the eigenvectors of XX" and X'X. Singular
values squared are the eigenvalues.
This Class: Applications of low-rank approx. beyond compression.
+ Matrix completion and collaborative filtering
- Entity embeddings (word embeddings, node embeddings, etc.)
+ Low-rank approximation fornon-linear dimensionality reduction.

- Spectral graph theory, spectral clustering.



MATRIX COMPLETION

Consider a matrix X € R"*9 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).



MATRIX COMPLETION

Consider a matrix X € R"*9 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem. L 1,3, 9.5
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MATRIX COMPLETION

Consider a matrix X € R"*9 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.
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MATRIX COMPLETION

Consider a matrix X € R"*9 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.
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MATRIX COMPLETION

Consider a matrix X € R"*9 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.
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MATRIX COMPLETION

Consider a matrix X € R"*9 which we cannot fully observe but

believe is close to rank-k (i.e., well approximated by a rank k Qwatrix).

Classic example: the Netflix prize problem. 8 SN \)l@_\- 3 K
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Under certain assumptions, can show that Y well approximates X on
both the observed and (most importantly) %nobserved entries.
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MATRIX COMPLETION

Consider a matrix X € R"*9 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

Y X Movies

49(31| 3 (113841 |4.1(34/|46 5|13|3 1/4|4|4|3]|5
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Solve: Y=argmin > [X}— B3’

rank —k B gpserved (i)
Under certain assumptions, can show that Y well approximates X on
both the observed and (most importantly) unobserved entries.
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Dimensionality reduction embeds d-dimensional vectors into k
dimensions. But what about when you want to embed objects
other than vectors?
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- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network



ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into k
dimensions. But what about when you want to embed objects
other than vectors?

- Documents (for topic-based search and classification)

- Words (to identify synonyms, translations, etc.) [} LIMEX

- Nodes in a social network O~ N

/‘
Usual Approach: Convert each item into a high- dlmen%ﬂal

feature vector and then apply low-rank approximation.
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EXAMPLE: LATENT SEMANTIC ANALYSIS
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
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If the error ||X — YZT||¢ is small, then on average,
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Xiq =~ (YZT)i,a = <Viaza>-
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
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If the error ||X — YZT||¢ is small, then on average,
Xiq =~ (YZT)i,a = <Viaza>-
e

le., (Vi,Zq) =~ 1 when doc; contains word,.
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
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- If the error ||X — YZT||¢ is small, then on average, 3)
Xiq =~ (YZT)i,a = <Viaza>-

- le, {Vi,Z,) = 1when doc; contains word,.

* If doc; and doc; both contain wordg, (Vi,Za) ~ (¥, Za) = 1.
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EXAMPLE: LATENT SEMANTIC ANALYSIS

If doc; and doc; both contain wordy, (Vi,Za) ~ (Vj,Za) =~ 1
Za <3"\j DAY ?35%,
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EXAMPLE: LATENT SEMANTIC ANALYSIS

If doc; and doc; both contain wordg, ( Vi, Za) y,,za )&~
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Another View: Each column of Y represents a ‘topic’ yi(j) indicates
how much doc; belongs to topic j. Z,(j) indicates how much word,
associates with that topic.



EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
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- Just like with documents,\éand Zp will tend to have high dot
product if word, and word, appear in many of the same
documents.
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- Just like with documents, Z, and Z,, will tend to have high dot
product if word, and word, appear in many of the same
documents.

- In an SVD decomposition we set Z" = XV},

- The columns of V, are equivalently: the top k eigenvectors of X'X.
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Term Document Matrix X Low-Rank Approximation via SVD
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- Just like with documents, Z, and Z,, will tend to have high dot
product if word, and word, appear in many of the same
documents.

- In an SVD decomposition we set Z" = XV},

- The columns of V, are equivalently: the top k eigenvectors of X'X.
The eigendecomposition of X'X is XX = VE2V'.
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
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- Just like with documents, Z, and Z,, will tend to have high dot
product if word, and word, appear in many of the same
documents.

- In an SVD decomposition we set Z" = XV},

- The columns of V, are equivalently: the top k eigenvectors of X'X.

The eigendecomposition of XX is X'X = VE*V]_ ND  AJx

- What is the best rank-k approximation of XX? l.e.

argming ks IXX=Blr =\, 50U, T R



EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
o 0, %, %, o
dcflofo|1|ofof|2f1]o]o0
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- Just like with documents, Z, and Z,, will tend to have high dot
product if word, and word, appear in many of the same
documents.

- In an SVD decomposition we set Z" = XV},

- The columns of V, are equivalently: the top k eigenvectors of X'X.
The eigendecomposition of X'X is XX = VE2V'.

- What is the best rank-k approximation of XX? l.e.
arg mmrankfk B ”XTX - BHF
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EXAMPLE: WORD EMBEDDING
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LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (M is
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EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q 1, is
the number of documents that both word, and word, appear in.

- Think about XX as a similarity matrix (gram matrix, kernel matrix)
with entry (a, b) being the similarity between word, and word,,.
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- Many ways to measure similarity: number of sentences both occur
in, number of times both appear in the same window of w words,
in similar positions of documents in different languages, etc.



EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q 1, is
the number of documents that both word, and word, appear in.

- Think about XX as a similarity matrix (gram matrix, kernel matrix)
with entry (a, b) being the similarity between word, and word,,.

- Many ways to measure similarity: number of sentences both occur
in, number of times both appear in the same window of w words,
in similar positions of documents in different languages, etc.

- Replacing X'X with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastText, etc.



EXAMPLE: WORD EMBEDDING

man WOnr{ girl
king queen boy
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EXAMPLE: WORD EMBEDDING

woman

g"' slower
\\ father slow
cat king queen
slowest

faster

dog \4 mother
\ cats daughter fast
dogs France
England longer
/ / he fastest
Paris Italy long
Londo%

h|mself
longest
herself &
Rome

Note: word2vec is typically described as a neural-network
method, but it is really just low-rank approximation of a
specific similarity matrix. Neural word embedding as implicit

matrix factorization, Levy and Goldberg.
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