COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.

Lecture 17

LOGISTICS

XTX = squared sizz, vales cestar while = singular value of XX cmy sym. A signal value of A = absolute values of eigenals

· Problem Set 3 deadline extended until Monday 10/26, 8pm.

· Week 9 Quiz will now be due Tuesday 10/27, 8pm. /

A = UEVT

() is orthogon S=5/17(V) 0 = W.2 Z= 1N 11= W

SUMMARY

- - Last Few Classes: Low-Rank Approximation and PCA · Compress data that lies close to a k-dimensional subspace.
 - Equivalent to finding a low-rank approximation of the data matrix X: $X \approx (XV)^T$ for orthonormal $V \in \mathbb{R}^{d \times k}$. Optimal solution via PCA (eigendecomposition of X^TX or
 - equivalently, SVD of X).
 - Singular vectors of **X** are the eigenvectors of $\mathbf{X}\mathbf{X}^{\mathsf{T}}$ and $\mathbf{X}^{\mathsf{T}}\mathbf{X}$. Singular values squared are the eigenvalues.

Last Few Classes: Low-Rank Approximation and PCA

- · Compress data that lies close to a *k*-dimensional subspace.
- Equivalent to finding a low-rank approximation of the data matrix $\mathbf{X}: \mathbf{X} \approx \mathbf{X}\mathbf{V}\mathbf{V}^T$ for orthonormal $\mathbf{V} \in \mathbb{R}^{d \times k}$.
- Optimal solution via PCA (eigendecomposition of X^TX or equivalently, SVD of X).
- Singular vectors of **X** are the eigenvectors of **XX**^T and **X**^T**X**. Singular values squared are the eigenvalues.

This Class: Applications of low-rank approx. beyond compression.

- · Matrix completion and collaborative filtering
- Entity embeddings (word embeddings, node embeddings, etc.)
- Low-rank approximation fornon-linear dimensionality reduction.
- · Spectral graph theory, spectral clustering.

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix).

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Consider a matrix $X \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Solve:
$$Y = \underset{\text{rank} - k}{\text{arg min}} \sum_{\text{observed } (j,k)} [X_{j,k} - B_{j,k}]^2$$

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem. $\mathbf{A} = \mathbf{A} \cdot \mathbf$

Solve:
$$Y = \underset{\underline{\text{rank}} - k}{\text{arg min}} \sum_{\underline{\text{observed } (j,k)}} \left[X_{j,k} - B_{j,k} \right]^2$$

Under certain assumptions, can show that \mathbf{Y} well approximates \mathbf{X} on both the observed and (most importantly) unobserved entries.

Consider a matrix $X \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

,												Movies								
4.9	3.1	3	1.1	3.8	4.1	4.1	3.4	4.6			5	3	3	1	4	4	4	3	5	
3.6	3	3	1.2	3.8	4.2	5	3.4	4.8			4	3	3	1	4	4	5	3	5	
2.8	3	3	2.3	3	3	3	3	3.2			3	3	3	2	3	3	3	3	3	
3.4	3	3	4	4.1	4.1	4.2	3	3	; (Jsers	4	3	3	4	4	4	4	3	3	
2.8	3	3	2.3	3	3	3	3	3.4			3	3	3	2	3	3	3	3	3	
2.2	5	3	4	4.2	3.9	4.4	4	5.3			2	5	3	4	4	4	4	4	5	
1	3.3	3	2.2	3.1	2.9	3.2	1.5	1.8			1	3	3	2	3	3	3	1	2	

Solve:
$$Y = \underset{\text{rank} - k}{\text{arg min}} \sum_{\substack{\bullet \text{observed } (j, h)}} \left[X_{j, k} - B_{j, h} \right]^2$$

Under certain assumptions, can show that **Y** well approximates **X** on both the observed and (most importantly) unobserved entries.

ENTITY EMBEDDINGS

Dimensionality reduction embeds *d*-dimensional vectors into *k* dimensions. But what about when you want to embed objects other than vectors?

ENTITY EMBEDDINGS

Dimensionality reduction embeds *d*-dimensional vectors into *k* dimensions. But what about when you want to embed objects other than vectors?

- · Documents (for topic-based search and classification)
- · Words (to identify synonyms, translations, etc.)
- · Nodes in a social network

ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into k dimensions. But what about when you want to embed objects other than vectors?

- · Documents (for topic-based search and classification)
- · Words (to identify synonyms, translations, etc.)
- · Nodes in a social network with a real net

Usual Approach: Convert each item into a high-dimensional feature vector and then apply low-rank approximation.

downer of high diversion URA for dimensions wester $x \in \mathbb{R}^d$ vector $x \in \mathbb{R}^k$

· If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

$$\underbrace{\mathbf{X}_{i,a}} \approx \underbrace{(\mathbf{Y}\mathbf{Z}^{\mathsf{T}})_{i,a}} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

· If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

$$\mathbf{X}_{i,a} \approx (\mathbf{Y}\mathbf{Z}^{\mathsf{T}})_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

• I.e., $\langle \vec{y_i}, \vec{z}_a \rangle \approx$ 1 when doc_i contains $word_a$.

· If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

$$\mathbf{X}_{i,a} pprox (\mathbf{Y}\mathbf{Z}^{\mathsf{T}})_{i,a} = \langle \vec{\mathbf{y}}_i, \vec{\mathbf{z}}_a \rangle.$$

- I.e., $\langle \vec{y}_i, \vec{z}_a \rangle \approx$ 1 when doc_i contains $word_a$.
- If $\underline{doc_i}$ and $\underline{doc_j}$ both contain $word_a$, $\underline{\langle \vec{y}_i, \vec{z}_a \rangle} \approx \underline{\langle \vec{y}_j, \vec{z}_a \rangle} \approx 1$.

If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$

Another View: Each column of Y represents a 'topic'. $\vec{y_i}(j)$ indicates how much doc_i belongs to topic j. $\vec{z_a}(j)$ indicates how much $word_a$ associates with that topic.

• Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.

- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- · In an SVD decomposition we set $\mathbf{Z}^T = \mathbf{\Sigma}_k \mathbf{V}_K^T$.
- The columns of V_k are equivalently: the top k eigenvectors of X^TX .

- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- · In an SVD decomposition we set $\mathbf{Z}^T = \mathbf{\Sigma}_k \mathbf{V}_K^T$.
- The columns of V_k are equivalently: the top k eigenvectors of X^TX . The eigendecomposition of X^TX is $X^TX = V\Sigma^2V^T$.

- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- · In an SVD decomposition we set $\mathbf{Z}^T = \mathbf{\Sigma}_k \mathbf{V}_K^T$.
- The columns of V_k are equivalently: the top k eigenvectors of X^TX . The eigendecomposition of X^TX is $X^TX = V\Sigma^2V^T$. V^TX
- What is the best rank-k approximation of X^TX ? I.e. $\arg\min_{\text{rank}-k} \|X^TX B\|_F > \bigvee_k \sum_k^2 \bigvee_k^T > 2 2^T$

- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- · In an SVD decomposition we set $\mathbf{Z}^T = \mathbf{\Sigma}_k \mathbf{V}_K^T$.
- The columns of V_k are equivalently: the top k eigenvectors of X^TX . The eigendecomposition of X^TX is $X^TX = V\Sigma^2V^T$.
- What is the best rank-k approximation of $\mathbf{X}^T\mathbf{X}$? I.e. $\arg\min_{\mathrm{rank}\,-k} \mathbf{B} \|\mathbf{X}^T\mathbf{X} \mathbf{B}\|_F$

$$\cdot \mathsf{X}^{\mathsf{T}}\mathsf{X} = \underbrace{\mathsf{V}_{k}\mathbf{\Sigma}_{k}^{2}\mathsf{V}_{k}^{\mathsf{T}}} = \mathsf{Z}\mathsf{Z}^{\mathsf{T}}.$$

• Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.

LSA gives a way of embedding words into *k*-dimensional space.

- Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between $word_a$ and $word_b$.

LSA gives a way of embedding words into *k*-dimensional space.

- Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between $word_a$ and $word_b$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.

LSA gives a way of embedding words into *k*-dimensional space.

- Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between $word_a$ and $word_b$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.
- Replacing X^TX with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastText, etc.

Note: word2vec is typically described as a neural-network method, but it is really just low-rank approximation of a specific similarity matrix. *Neural word embedding as implicit matrix factorization*, Levy and Goldberg.