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LOGISTICS

- Problem Set 3 is due this Friday 10/23 at 8pm.

- Midterm grades were released this weekend. Mean/median
~ 35/40. Higher than | was aiming for - so nice work!

- If you are concerned about your grade let me know and we can
chat about how to pull it up going forward.

+ The curve is not fixed, but if you need a B for core requirement,
you should be shooting for a raw grade in around the mid 70s.

* Remember that your can get up to 5% extra credit for
participation. Also attempting the EC problems on the problem
sets can have a big effect. Often account for > 20% of the score.

- A number of people want more review problems, especially for
linear algebra. | will plan to post a set of review problems
probably early next week.
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QUIZ PROBLEM



SUMMARY

Last Class: Low-Rank Approximation, Eigendecomposition, and PCA

- Can approximate data lying close to in a k-dimensional subspace
by projecting data points into that space.

+ Can find the best k-dimensional subspace via eigendecomposition
applied to X'X (PCA).

+ Measuring error in terms of the eigenvalue spectrum.

This Class: Finish Low-Rank Approximation and Connection to the
singular value decomposition (SVD)

- Finish up optimal low-rank approximation (PCA). Runtime
considerations.

- View of optimal low-rank approximation using the SVD.

- Applications of low-rank approximation beyond compression.



BASIC SET UP

Set Up: Assume that data points X, ..., X, lie any
k-dimensional subspace V of R?. Let X € R"*? be the data matrix.
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Let V4, ...,V be an orthonormal basis for V and V € R¥** be the

matrix with these vectors as its columns.
- W' e R9%9 s the onto V.

- X = X(WT). Gives the closest approximation to X with rows in V.

[ X1,...,%n € R%: data points, X € R"*9: data matrix, 4, ..., V, € R%: orthogo- ] 4
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LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by:
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Solution via eigendecomposition: Letting V, have columns V4,. ..,V
corresponding to the top k eigenvectors of the covariance matrix XX,
Ve=  argmax |XV|?

orthonormal VERd Xk

* Proof via Courant-Fischer and greedy maximization.

- Approximation error is ||X||# — [|XV||z = ZLM Ai(XTX).

X1,...,% € RY: data points, X € R"%: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V e R9*k: matrix with columns V4, .. . , V. 5




SPECTRUM ANALYSIS

Plotting the of the covariance matrix X'X (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how
close Xi,..., X, are to a low-dimensional subspace).
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error of optimal low rank
approximation

- Choose k to balance accuracy and compression.

- Often at an ‘elbow’.

[ X,...,% € R% data points, X € R"*9: data matrix, v4,...,V, € R top ] 6
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ALGORITHMIC CONSIDERATIONS

Runtime to compute an optimal low-rank approximation:

- Computing the covariance matrix XX requires O(nd”) time.
- Computing its full eigendecomposition to obtain vy,...,V,
requires O(d”) time (similar to the inverse (X"X)™7).

Many faster iterative and randomized methods. Runtime is

roughly to output just to top k eigenvectors v, ..., V.

- Will see in a few classes (power method, Krylov methods).
- One of the most intensively studied problems in numerical
computation.

X,...,%n € R data points, X € R"™ % data matrix, V4,...,V, € R% top
eigenvectors of X7X, Vi, € R?%F: matrix with columns v, . . ., V. 7




SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X € R"™9 with rank(X) = r can be written as X = UXV".

- U has orthonormal columns i, ..., U, € R" (left singular vectors).

-V has orthonormal columns V4, ..., V, € RY (right singular vectors).
- X is diagonal with elements o4 > 0, > ... > o, > 0 (singular

values).
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The ‘swiss army knife’ of modern linear algebra.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value decomposition X = UXV’:
X'X = VEUTUZV" = VE?V' (the eigendecomposition)
Similarly: XX" = UZVIVEUT = UZ°U’.

The left and right singular vectors are the eigenvectors of the
covariance matrix X'X and the gram matrix XX" respectively.

So, letting Vi, € RY** have columns equal to V4, ..., Vi, we know that
XV, V} is the best rank-k approximation to X (given by PCA).

What about UkULX where U, € R"** has columns equal to U, ..., Ux?

X € R4 data matrix, U € R"*MankX): matrix with orthonormal columns
Uh, Uy, ... (left singular vectors), V. e RIxmank(X): matrix with orthonormal
columns V4, ¥, . .. (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = argmin n, _p gernxd |[X — BJ|F is given by:
Xp = XVRV], = ULUIX = U,E,V}
Correspond to projecting the rows (data points) onto the span
of Vi, or the columns (features) onto the span of U,
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = arg min o —k sernxo ||[X — BJ|¢ is given by:

Xp = XViV], = URULX = U XV},

X € R4 data matrix, U € R"*"kX): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RI%mank(X). matrix with orthonormal
columns V4, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = arg min o —k sernxo ||[X — BJ|¢ is given by:

Xp = XViV], = URULX = U XV},

X € R4 data matrix, U € R"*"kX): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RI%mank(X). matrix with orthonormal
columns V4, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




