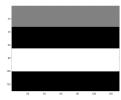
COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2020. Lecture 16

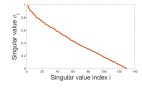
LOGISTICS

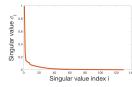
- Problem Set 3 is due this Friday 10/23 at 8pm.
- Midterm grades were released this weekend. Mean/median
 ≈ 35/40. Higher than I was aiming for so nice work!
- If you are concerned about your grade let me know and we can chat about how to pull it up going forward.
- The curve is not fixed, but if you need a B for core requirement, you should be shooting for a raw grade in around the mid 70s.
- Remember that your can get up to 5% extra credit for participation. Also attempting the EC problems on the problem sets can have a big effect. Often account for > 20% of the score.
- A number of people want more review problems, especially for linear algebra. I will plan to post a set of review problems probably early next week.

QUIZ PROBLEM











Last Class: Low-Rank Approximation, Eigendecomposition, and PCA

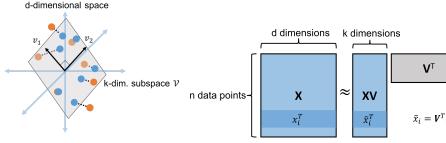
- Can approximate data lying close to in a *k*-dimensional subspace by projecting data points into that space.
- Can find the best k-dimensional subspace via eigendecomposition applied to $\mathbf{X}^T\mathbf{X}$ (PCA).
- · Measuring error in terms of the eigenvalue spectrum.

This Class: Finish Low-Rank Approximation and Connection to the singular value decomposition (SVD)

- Finish up optimal low-rank approximation (PCA). Runtime considerations.
- · View of optimal low-rank approximation using the SVD.
- · Applications of low-rank approximation beyond compression.

BASIC SET UP

Set Up: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.



Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for V and $V \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{W}^T \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .
- $X \approx X(VV^T)$. Gives the closest approximation to X with rows in V.

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{d \times k}$: matrix with columns \vec{v}_k .

LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\mathop{\arg\max}_{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}\|\mathbf{X}\mathbf{V}\|_{\mathit{F}}^{2}=\sum_{j=1}^{R}\|\mathbf{X}\vec{\mathbf{V}}_{j}\|_{2}^{2}$$

Solution via eigendecomposition: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix X^TX ,

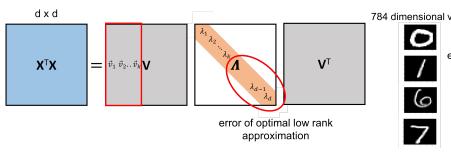
$$\mathbf{V}_k = \underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\operatorname{arg max}} \|\mathbf{X}\mathbf{V}\|_F^2$$

- Proof via Courant-Fischer and greedy maximization.
- Approximation error is $\|\mathbf{X}\|_F^2 \|\mathbf{X}\mathbf{V}_k\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^T\mathbf{X})$.

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix $\mathbf{X}^T\mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace).



- Choose *k* to balance accuracy and compression.
- · Often at an 'elbow'.

Runtime to compute an optimal low-rank approximation:

- · Computing the covariance matrix X^TX requires $O(nd^2)$ time.
- Computing its full eigendecomposition to obtain $\vec{v}_1, \dots, \vec{v}_k$ requires $O(d^3)$ time (similar to the inverse $(\mathbf{X}^T\mathbf{X})^{-1}$).

Many faster iterative and randomized methods. Runtime is roughly $\tilde{O}(ndk)$ to output just to top k eigenvectors $\vec{v}_1, \dots, \vec{v}_k$.

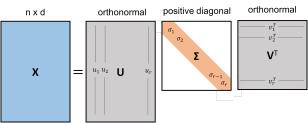
- · Will see in a few classes (power method, Krylov methods).
- One of the most intensively studied problems in numerical computation.

 $\vec{X}_1, \dots, \vec{X}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T} \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $X \in \mathbb{R}^{n \times d}$ with rank(X) = r can be written as $X = U \Sigma V^T$.

- **U** has orthonormal columns $\vec{u}_1, \dots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- V has orthonormal columns $\vec{v}_1, \dots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).
- Σ is diagonal with elements $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_r > 0$ (singular values).



The 'swiss army knife' of modern linear algebra.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\boldsymbol{\Sigma}\mathbf{U}^{\mathsf{T}}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\boldsymbol{\Sigma}^{2}\mathbf{V}^{\mathsf{T}}$$
 (the eigendecomposition)

Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^T\mathbf{X}$ and the gram matrix $\mathbf{X}\mathbf{X}^T$ respectively.

So, letting $V_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \dots, \vec{v}_k$, we know that $XV_kV_k^T$ is the best rank-k approximation to X (given by PCA).

What about $\mathbf{U}_k \mathbf{U}_k^T \mathbf{X}$ where $\mathbf{U}_k \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_1, \dots, \vec{u}_k$? Gives exactly the same approximation!

 $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \text{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{u}_1, \vec{u}_2, \ldots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \text{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_1, \vec{v}_2, \ldots$ (right singular vectors), $\mathbf{\Sigma} \in \mathbb{R}^{\text{rank}(\mathbf{X}) \times \text{rank}(\mathbf{X})}$: positive diagonal matrix containing singular values of \mathbf{X} .

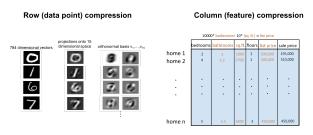
THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:

 $\mathbf{X}_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ \mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$ is given by:

$$\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T} = \mathbf{U}_k \mathbf{U}_k^\mathsf{T} \mathbf{X} = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^\mathsf{T}$$

Correspond to projecting the rows (data points) onto the span of \mathbf{V}_k or the columns (features) onto the span of \mathbf{U}_k



THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:

$$\mathbf{X}_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ \mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$$
 is given by:

$$\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T} = \mathbf{U}_k \mathbf{U}_k^\mathsf{T} \mathbf{X} = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^\mathsf{T}$$

 $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \mathrm{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{u}_1, \vec{u}_2, \ldots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \mathrm{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_1, \vec{v}_2, \ldots$ (right singular vectors), $\mathbf{\Sigma} \in \mathbb{R}^{\mathrm{rank}(\mathbf{X}) \times \mathrm{rank}(\mathbf{X})}$: positive diagonal matrix containing singular values of \mathbf{X} .

THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:

$$\mathbf{X}_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ \mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$$
 is given by:

$$\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T} = \mathbf{U}_k \mathbf{U}_k^\mathsf{T} \mathbf{X} = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^\mathsf{T}$$

 $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \mathrm{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{u}_1, \vec{u}_2, \ldots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \mathrm{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_1, \vec{v}_2, \ldots$ (right singular vectors), $\mathbf{\Sigma} \in \mathbb{R}^{\mathrm{rank}(\mathbf{X}) \times \mathrm{rank}(\mathbf{X})}$: positive diagonal matrix containing singular values of \mathbf{X} .