COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2020. Lecture 16

LOGISTICS

- Problem Set 3 is due this Friday 10/23 at 8pm.
- Midterm grades were released this weekend. Mean/median $\approx 35/40$. Higher than I was aiming for so nice work!
- If you are concerned about your grade let me know and we can chat about how to pull it up going forward.
 - The curve is not fixed, but if you need a B for core requirement, you should be shooting for a raw grade in around the mid 70s.
- Remember that your can get up to 5% extra credit for participation. Also attempting the EC problems on the problem sets can have a big effect. Often account for > 20% of the score.
- A number of people want more review problems, especially for linear algebra. I will plan to post a set of review problems probably early next week.

QUIZ PROBLEM



Last Class: Low-Rank Approximation, Eigendecomposition, and PCA

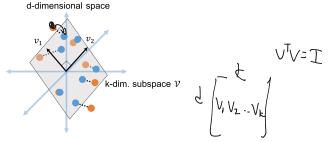
- Can approximate data lying close to in a k-dimensional subspace by projecting data points into that space. Can find the best k-dimensional subspace via eigendecomposition applied to X^TX (PCA).
- · Measuring error in terms of the eigenvalue spectrum.

This Class: Finish Low-Rank Approximation and Connection to the interest singular value decomposition (SVD)

- Finish up optimal low-rank approximation (PCA). Runtime considerations.
- · View of optimal low-rank approximation using the SVD.
- · Applications of low-rank approximation beyond compression.

BASIC SET UP

Set Up: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.



Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for V and $V \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{V}\mathbf{V}^T \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .
- $X \approx X(VV^T)$. Gives the closest approximation to X with rows in V.

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

BASIC SET UP

Set Up: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any (is closest point to $\nabla = V \subset K$ -dimensional subspace V of \mathbb{R}^d . Let $X \in \mathbb{R}^{n \times d}$ be the data matrix ANT E MXZ d dimensions k dimensions n data pointsnx (< Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the

matrix with these vectors as its columns.

• $\mathbf{W}^T \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .

• $\mathbf{X} \approx \mathbf{X}(\mathbf{W}^T)$. Gives the closest approximation to \mathbf{X} with rows in \mathcal{V} .

• $\mathbf{X} \approx \mathbf{X}(\mathbf{V}\mathbf{V}^T)$. Gives the closest approximation to \mathbf{X} with rows in \mathcal{V} . $\vec{\mathbf{x}}_1, \dots, \vec{\mathbf{x}}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k$.

LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_F^2$ is given by:

$$\mathop{\arg\max}_{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}\|\mathbf{XV}\|_{F}^{2}=\sum_{j=1}^{k}\|\mathbf{X}\vec{\mathbf{v}}_{j}\|_{2}^{2}$$

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

V minimizing
$$\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$$
 is given by:
$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{j=1}^k \|\mathbf{X}\vec{v}_j\|_2^2$$
Solution via eigendecomposition: Letting \mathbf{V}_k have columns $\vec{v}_1, \dots, \vec{v}_k$

corresponding to the top
$$k$$
 eigenvectors of the covariance matrix X^TX ,
$$V_k = \underset{\text{orthonormal } V \in \mathbb{R}^{d \times k}}{\arg\max} \|XV\|_F^2 = \underset{\text{orthonormal } V \in \mathbb{R}^{d \times k}}{\|XV\|_F^2} = \underset{\text{orthonormal } V \in \mathbb{R}^{d \times k}}{\|XV\|_F^2}$$

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\ \mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg\max} \, \|\mathbf{XV}\|_F^2 = \sum_{j=1}^k \, \|\mathbf{X}\vec{\mathbf{v}}_j\|_2^2$$

Solution via eigendecomposition: Letting V_k have columns $\vec{v}_1, \ldots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix X^TX ,

$$V_{k} = \underset{\text{orthonormal } V \in \mathbb{R}^{d \times k}}{\text{arg max}} \|XV\|_{F}^{2}$$

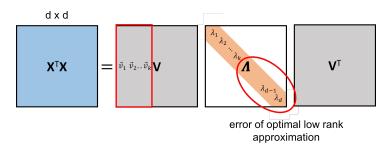
- Proof via Courant-Fischer and greedy maximization.
- $\begin{array}{c} \text{Approximation error is } \|\mathbf{X}\|_F^2 \|\mathbf{X}\mathbf{V}_k\|_F^2 = \sum_{i=k+1}^d \underline{\lambda}_i(\mathbf{X}^\mathsf{T}\mathbf{X}). \\ \|\mathbf{X}^\mathsf{T}\mathbf{X}^\mathsf{T}\mathbf{X}^\mathsf{T}\mathbf{X}^\mathsf{T}\mathbf{X}^\mathsf{T}\mathbf{X} + \mathbf{X}^\mathsf{T}\mathbf{X}^\mathsf{T}\mathbf{X} \\ \underline{\lambda}_i(\mathbf{X}^\mathsf{T}\mathbf{X}) > \underline{\lambda}_2(\mathbf{X}^\mathsf{T}\mathbf{X}) & ... > \underline{\lambda}_d(\mathbf{X}^\mathsf{T}\mathbf{X}) \end{array}$

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Plotting the spectrum of the covariance matrix $\mathbf{X}^T\mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace).

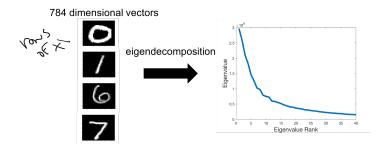
 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Plotting the spectrum of the covariance matrix $\mathbf{X}^T\mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace).



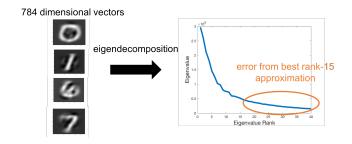
 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Plotting the spectrum of the covariance matrix $\mathbf{X}^T\mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace).



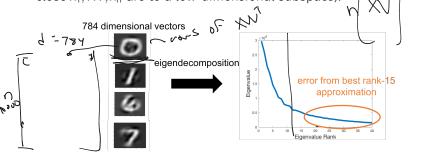
 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Plotting the spectrum of the covariance matrix $\mathbf{X}^T\mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace).



 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X}$, $\mathbf{V}_k\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Plotting the spectrum of the covariance matrix $\mathbf{X}^T\mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_1, \ldots, \vec{x}_n$ are to a low-dimensional subspace).



- · Choose *k* to balance accuracy and compression.
- · Often at an <u>'elbow'</u>.

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

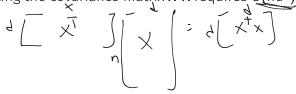
Runtime to compute an optimal low-rank approximation:

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

oxx: comme are to top Kelgradors of WX

Runtime to compute an optimal low-rank approximation:

· Computing the covariance matrix X^TX requires $O(nd^2)$ time.



 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Runtime to compute an optimal low-rank approximation:

- · Computing the covariance matrix X^TX requires $O(nd^2)$ time.
- · Computing its full eigendecomposition to obtain $\vec{v}_1, \dots, \vec{v}_k$

requires
$$O(d^3)$$
 time (similar to the inverse $(X^TX)^{-1}$).

$$O(n^2 + J^3)$$

$$V O(n^2) + V O(n^2$$

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k$.

Runtime to compute an optimal low-rank approximation:

Computing the covariance matrix X^TX requires O(nd²) time.
 Computing its full eigendecomposition to obtain v

 ₁,..., v

 _k

 requires O(d³) time (similar to the inverse (X^TX)⁻¹).

Many faster iterative and randomized methods. Runtime is roughly O(ndk) to output just to top k eigenvectors $\vec{v}_1, \ldots, \vec{v}_k$.

- Will see in a few classes (power method, Krylov methods).One of the most intensively studied problems in numerical
- One of the most intensively studied problems in numerical computation.

$$\vec{\mathbf{x}}_1,\ldots,\vec{\mathbf{x}}_n\in\mathbb{R}^d$$
: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k\in\mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X}$, $\mathbf{V}_k\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k$.

The Singular Value Decomposition (SVD) generalizes the $A \times A \times A$ eigendecomposition to asymmetric (even rectangular) matrices.

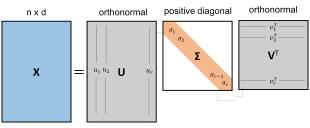
The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with rank $(\mathbf{X}) = r$ can be written as $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$.

- **U** has orthonormal columns $\vec{u}_1, \dots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- · V has orthonormal columns $\vec{v}_1, \dots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).

• Σ is diagonal with elements $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$ (singular values).

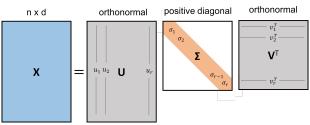
The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with rank $(\mathbf{X}) = r$ can be written as $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$.

- **U** has orthonormal columns $\vec{u}_1, \dots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- · V has orthonormal columns $\vec{v}_1, \dots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).
- Σ is diagonal with elements $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_r > 0$ (singular values).



The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with rank $(\mathbf{X}) = r$ can be written as $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$.

- **U** has orthonormal columns $\vec{u}_1, \dots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- · V has orthonormal columns $\vec{v}_1, \dots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).
- Σ is diagonal with elements $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_r > 0$ (singular values).



The 'swiss army knife' of modern linear algebra.

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$X^{T}X = \left[\underbrace{\bigcup z V^{T}}_{X}\right]^{T}\underbrace{\bigcup z V^{T}}_{X} = \underbrace{\bigvee z \bigcup_{i=1}^{T} \bigcup z V^{T}}_{X}$$

$$= \underbrace{\bigvee z \bigcup_{i=1}^{T} \bigcup z V^{T}}_{X}$$

$$= \underbrace{\bigvee z \bigcup_{i=1}^{T} \bigcup z V^{T}}_{X}$$

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$:

$$\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^T\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T$$

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\mathbf{\Sigma}^{2}\mathbf{V}^{\mathsf{T}}$$

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$: / Csanol $\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\boldsymbol{\Sigma}\mathbf{U}^{\mathsf{T}}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\boldsymbol{\Sigma}^{2}\mathbf{V}^{\mathsf{T}}$ (the eigendecomposition) orthogrand V contains right singular vectors of X
= eigenectors of XIX E contons singular values of X a soular values squared are eigendus of

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$: $\mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T \text{ (the eigendecomposition)}$ Similarly: $\mathbf{X} \mathbf{X}^T = \mathbf{U} \mathbf{\Sigma} \mathbf{V} \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T = \mathbf{U} \mathbf{\Sigma}^2 \mathbf{U}^T. \quad \Rightarrow \mathbf{e} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v}$

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$X^{T}X = V\Sigma U^{T}U\Sigma V^{T} = V\Sigma^{2}V^{T}$$
 (the eigendecomposition)

Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

The left and right singular vectors are the eigenvectors of the covariance matrix X^TX and the gram matrix XX^T respectively.

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$: $\mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$ (the eigendecomposition) Similarly: $\mathbf{X} \mathbf{X}^T = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T = \mathbf{U} \mathbf{\Sigma}^2 \mathbf{U}^T$. The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^T \mathbf{X}$ and the gram matrix $\mathbf{X} \mathbf{X}^T$ respectively. So, letting $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{\mathbf{V}}_1, \dots, \vec{\mathbf{V}}_k$, we know that $\mathbf{X} \mathbf{V}_k \mathbf{V}_k^T$ is the best rank-k approximation to \mathbf{X} (given by PCA).

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\mathbf{\Sigma}^{2}\mathbf{V}^{\mathsf{T}}$$
 (the eigendecomposition)

Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

The left and right singular vectors are the eigenvectors of the covariance matrix X^TX and the gram matrix XX^T respectively.

So, letting $V_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \dots, \vec{v}_k$, we know that $XV_kV_k^T$ is the best rank-k approximation to X (given by PCA).

What about $\mathbf{U}_k \mathbf{U}_k^\mathsf{T} \mathbf{X}$ where $\mathbf{U}_k \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_1, \dots, \vec{u}_k$?

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$X^TX = V\Sigma U^TU\Sigma V^T = V\Sigma^2 V^T$$
 (the eigendecomposition)

Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

The left and right singular vectors are the eigenvectors of the covariance matrix X^TX and the gram matrix XX^T respectively.

So, letting $V_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \dots, \vec{v}_k$, we know that $XV_kV_k^T$ is the best rank-k approximation to X (given by PCA).

What about $\mathbf{U}_k \mathbf{U}_k^\mathsf{T} \mathbf{X}$ where $\mathbf{U}_k \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_1, \dots, \vec{u}_k$? Gives exactly the same approximation!

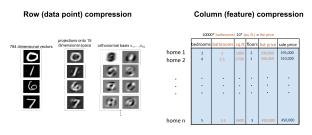
$$\underbrace{\mathbf{X}_{k}}_{\mathbf{X}_{k}} = \underbrace{\mathbf{X}\mathbf{V}_{k}\mathbf{V}_{k}^{\mathsf{T}}}_{\mathbf{V}_{k}} = \underbrace{\mathbf{U}_{k}\mathbf{U}_{k}^{\mathsf{T}}\mathbf{X}}_{\mathbf{V}_{k}}$$

The best low-rank approximation to X: $X_k = \arg\min_{\substack{rank-k \\ rank}} \sum_{B \in \mathbb{R}^{n \times d}} \|X - B\|_F \text{ is given by:} \qquad \text{for all } X_k = XV_kV_k^T = U_kU_k^TX$

The best low-rank approximation to **X**:

 $\mathbf{X}_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ \mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$ is given by:

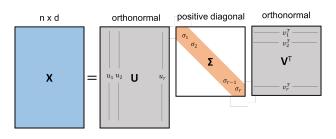
$$\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T} = \mathbf{U}_k \mathbf{U}_k^\mathsf{T} \mathbf{X}$$



The best low-rank approximation to X:

 $\mathbf{X}_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ \mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$ is given by:

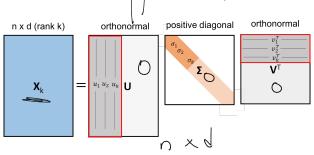
$$X_k = XV_kV_k^T = U_kU_k^TX$$



The best low-rank approximation to X:

 $\mathbf{X}_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ \mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$ is given by:

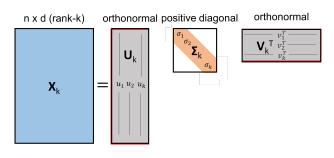
$$\mathbf{X}_{k} = \mathbf{X}\mathbf{V}_{k}\mathbf{V}_{k}^{\mathsf{T}} = \mathbf{U}_{k}\mathbf{U}_{k}^{\mathsf{T}}\mathbf{X}$$



The best low-rank approximation to X:

 $\mathbf{X}_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ \mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$ is given by:

$$\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T} = \mathbf{U}_k \mathbf{U}_k^\mathsf{T} \mathbf{X} = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^\mathsf{T}$$

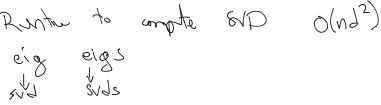


 $C \geq K$ The best low-rank approximation to **X**: $X_k = \arg\min_{\text{rank} = k} \sup_{B \in \mathbb{R}^{n \times d}} ||X - B||_F \text{ is given by:}$ $\mathbf{U}_{b}\mathbf{U}_{b}^{T}\mathbf{X} = \mathbf{U}_{b}\mathbf{\Sigma}_{b}\mathbf{V}_{b}^{T}$ $X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times rank(X)}$: matrix with orthonormal columns $\vec{u}_1, \vec{u}_2, \dots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \text{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_1, \vec{v}_2, \dots$ (right singular vectors), $\Sigma \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X.

The best low-rank approximation to **X**:

$$\mathbf{X}_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ \mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$$
 is given by:

APPLICATIONS OF LOW-RANK APPROXIMATION



Rest of Class: Examples of how low-rank approximation is applied in a variety of data science applications.