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LOGISTICS

- Problem Set 3 is due this Friday 10/23 at 8pm.

- Midterm grades were released this weekend. Mean/median
~ 35/40. Higher than | was aiming for - so nice work!

- If you are concerned about your grade let me know and we can
chat about how to pull it up going forward.

* The curve is not fixed, but if you need a B for core requirement,
you should be shooting for a raw grade in around the mid 70s.

+ Remember that your can get up to 5% extra credit for
participation. Also attempting the EC problems on the problem
sets can have a big effect. Often account for > 20% of the score.

* A number of people want more review problems, especially for
linear algebra. | will plan to post a set of review problems
probably early next week.
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SUMMARY

Last Class: Low-Rank Approximation, Eigendecomposition, and PCA

- Can approximate data lying close to in a k-dimensional subslpace m!
by prOJectmg data points into that space. N E ”’L

*[ Can find the best k-dimensional subspace via elgendecomposmon
applied to XX (PCA). ey k-

© Measuring error in terms of the eigenvalue spectrum.

This Class: Finish Low-Rank Approximation and Connectiom
singular value decomposition (SVD)

+ Finish up optimal low-rank approximation (PCA). Runtime
considerations.
- View of optimal low-rank approximation using the SVD.

- Applications of low-rank approximation beyond compression.



BASIC SET UP

P
Set Up: Assume that data points X;, ..., X, lie close to any

k-dimensional subspace V of R?. Let X € R"*? be the data matrix.
d-dimensional space
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k-dim. subspace V
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Let Vi, ...,V be an orthonormal basis for V and V € R9** pe the
matrix with these vectors as its columns.

- W' e R s the projection matrix onto V.

© X =~ X(WT). Gives the closest approximation to X with rows in V.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, .. . , V. 4




BASIC SET UP

Ex_ Ip tﬁ 15 oA \/ -\\u,\ \/VTU':) :\7)
¢ — SetpA T
n®
7&\1\1 < ﬂL d dimensions  k dimensions
_ r | \ r A \ Q
T
n \'}
n data points X | Xv
e X < —a ;/ % = Vr

Let \_/’17 ceey
matrix with these vectors as its columns.

- WT € R¥%9 s the onto V. Ms
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Vi be an orthonormal basis for v and V € Rdx’? be the
X Y = X
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- X~ X(VWT). Gives the closest approximation to X with rows in V.

Axl\4

X,..., % € RY data points, X € R"%9: data matrix, ¥, ...,

nal basis for subspace V. V e RYxk: matrix with columns ¥, . ..

Vi, € RY: orthogo-
Vi




LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by:
k
argmax XV = IX13

orthonormal VERIX =1

Xi,...,% € RY: data points, X € R"*?: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V. 5




LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

_k
V minimizing ||X — XWV'||2 is given by: *t ]
R

argmax XVIE =D X3 J
orthonormal VER j=1 , N\
Solution via eigendecomposition: Letting Vi, have columns V4, ...,V
corresponding to the top k eigenvectors of the covariance matrix X'X,
N _— T
Vo= argmax v = 2o [yeanls

orthonormal VERdxk

Xi,...,% € RY: data points, X € R"*?: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V. 5




LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION
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V minimizing )X — XW|[2 is given by: @

k
arg max XV|)? = XVi |3
g \ [[XVI|z Z H\}-|—|2/

orthonormal VERIX =1

Solution via eigendecomposition: Letting Vi, have columns V4, ...,V
corresponding to the top k eigenvectors of the covariance matrix X'X,

Ve=  argmax [|XV|?
=== orthonormal VERI**F

- Proof via Courant-Fischer and greedy maximization.
P . d
- Approximation error is ||X||2 — ||XV,||2 = Z’=’?+1w'

T -~
| x- \N\JT”F - (D e & X
] OO SR - - > N(KTR)
Xi,...,% € RY: data points, X € R"*?: data matrix, ¥1, . .., v, € R orthogo-

nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V. 5




SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix X’X (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how
close X;,...,X, are to a low-dimensional subspace).

X1,...,%X € RY data points, X € R"%9: data matrix, v1,...,%, € R top
eigenvectors of XX, V, € RI¥k: matrix with columns V4, .. . , V. 6




SPECTRUM ANALYSIS

Plotting the of the covariance matrix XX (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how
close X;,...,X, are to a low-dimensional subspace).

dxd
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XX = |1 %, T[] A \Vi
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error of optimal low rank
approximation

X1,...,%X € RY data points, X € R"%9: data matrix, v1,...,%, € R top
eigenvectors of XX, V, € RI¥k: matrix with columns V4, .. . , V. 6




SPECTRUM ANALYSIS

Plotting the of the covariance matrix XX (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how
close X;,...,X, are to a low-dimensional subspace).

784 dimensional vectors

\(s«b E
Ve 25
,“( * eigendecomposition
&
o
Xi,...,% € RY data points, X € R"%9: data matrix, v,...,V € R top

eigenvectors of XX, V, € RYXk: matrix with columns ¥, .. . , 7. 6




SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix X’X (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how
close X;,...,X, are to a low-dimensional subspace).

784 dimensional vectors

eigendecomposition

—

error from best rank-
approximation

Eigenvalue

o s 0 B o m%
Eigenvalue Rank

SESE

X1,..., % € RY: data points, X € R™<9: data matrix, v},

..., V, € R top
eigenvectors of XTX, V, € R?%k: matrix with columns ¥, .

<oy Vp




SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix X'X (its eigenvalues)
shows how compressible X is using low-rank approxmatl?n i.e., how
close Xi,...,X, are to a low- dlmen5|onal subspace). X\J

784 dimensional vectors DF \kN
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C eigendecomposition
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+ Choose k to balance accuracy and compression.
- Often at an ‘elbow..
———

Eigenvalue

s m
Eigenvalue Rank

X1,..., % € RY: data points, X € R™<9: data matrix, v},

., ¥, € RY: top
eigenvectors of XTX, Vi, € R?%k: matrix with columns ¥,

<oy Vp




ALGORITHMIC CONSIDERATIONS

Runtime to compute an optimal low-rank approximation:

X,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of X'X, Vi, € R4>k: matrix with columns V4, . . ., V. 7
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Runtime to compute an optimal low-rank approximation:

- Computing the covarlance matrlx XTX requwes 0(nd?) time.

I jL ]

X,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of X'X, Vi, € R4>k: matrix with columns V4, . . ., V. 7




ALGORITHMIC CONSIDERATIONS

Runtime to compute an optimal low-rank approximation:

- Computing the covariance matrix X'X requires O(nd?) time.

- Computing its full eigendecomposition to obtain vy, ...,V J
requires O(d®) time (similar to the inverse (X'X)~"). q"\ j
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X,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of X'X, Vi, € R4>k: matrix with columns V4, . . ., V. 7




ALGORITHMIC CONSIDERATIONS
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Runtime to compute an optimal low-rank approximation:

(
i
RN Computing the covariance matrix XX requires O(nd”) time. D
- Computing its full eigendecomposition to obtain vy, ...,V T
requires O(c’) time (similar to the inverse (X'X)~1). X = KW

Many faster iterative and randomized methods. Runtime is X\lj
. . 5 o vk
roughly to output just to top k eigenvectors va,..., Vg _ 2
— kL\‘T S
- Will see in a few classes (power method, Krylov methods).
- One of the most intensively studied problems in numerical

computation.
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X,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of X'X, Vi, € R4>k: matrix with columns V4, . . ., V. 7




SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the Ax = xX
eigendecomposition to asymmetric (even rectangular) matrices. \'

AR



SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X € R"™9 with rank(X) = r can be written as X = UXV'.

- U has orthonormal columns i, ..., 0, € R" (left singular vectors).
-V has orthonormal columns v;, ..., V, € RY (right singular vectors).
- X is diagonal with e ements >0y >...>0, >0 smgular

S e I



SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X € R"*9 with rank(X) = r can be written as X = UXV'.

- U has orthonormal columns i, ..., 0, € R" (left singular vectors).

-V has orthonormal columns v;, ..., V, € RY (right singular vectors).

- X is diagonal with elements oy > 0y > ... > o, > 0 (singular

values).
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SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X € R"*9 with rank(X) = r can be written as X = UXV'.

- U has orthonormal columns i, ..., 0, € R" (left singular vectors).

-V has orthonormal columns v;, ..., V, € RY (right singular vectors).

- X is diagonal with elements oy > 0y > ... > o, > 0 (singular

values).
orthonormal
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orthonormal

positive diagonal
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The ‘swiss army knife’ of modern linear algebra.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value decomposition X = UXV":

— T T
px=(0zv] 0zt = vzgpsy
) X X T

T
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X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value decomposition X = UXV":

XX =vzu'uzv’

X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value decomposition X = UXV":

X'X =v=Uu'uzVv' = vV’

X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value ﬁjecomp05|t|on’X’/U};V_T
/-(/bvw\h

XX = VEUTUZV' = V2V’ (the eigendecomposition)
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X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value decomposition X = UXV":
dxd

X'X = V):UTUZVT VX2V (the eigendecomposition)

nxn

~
Similarly: XX = U):V/(/ZUT Uz’ = e»&z»&cm\“o o N

X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value decomposition X = UXV":
XX = VEUTUZV' = VE2V' (the eigendecomposition)
Similarly: XX" = UZVVEUT = UX?UT.

The left and right singular vectors are the eigenvectors of the
covariance matrix X'X and the gram matrix XX' respectively.

X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value decompositi%rtx‘% uxv’ r\LU
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XX = VEUTUZV' = VE2V' (the eigendecomposition) XXT
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Similarly: XX" = UXVIVEUT = UZ°U". dgaesls & 0
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The left and right singular vectors are the eigenvectors of the

covariance matrix X'X and the gram matrix XX' respectively, «
g pectively, 4 Gt S

. dxk R ~, wavd
So, letting Vi, € R9** have columns equal to vy, ..., Vi, we know that

XV,V}, is the best rank-k approximation to X (given by PCA).

X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value decomposition X = UXV":
XX = VEUTUZV' = VE2V' (the eigendecomposition)
Similarly: XX" = UZVVEUT = UX?UT.

The left and right singular vectors are the eigenvectors of the
covariance matrix X'X and the gram matrix XX' respectively.

So, letting V, € RY** have columns equal to Vi, ..., Vi, we know that
XV, V], is the best rank-k approximation to X (given by PCA).
—_—
What about U;U[X where U, € R"** has columns equal to s, ..., Ux?
"

X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value decomposition X = UXV":
XX = VEUTUZV' = VE2V' (the eigendecomposition)
Similarly: XX" = UZVVEUT = UX?UT.

The left and right singular vectors are the eigenvectors of the
covariance matrix X'X and the gram matrix XX' respectively.

So, letting V, € RY** have columns equal to Vi, ..., Vi, we know that
XV,V}, is the best rank-k approximation to X (given by PCA).

What about U;U[X where U, € R"** has columns equal to s, ..., Ux?

X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

N
The best low-rank approximation to X: é\\w\ )
Xp = argminrank—k BeRnxd HX - BHF is given by: \DJ S i ‘
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = argmin un, _p gernxd |[X — BJ|¢ is given by:
X = XV,V], = ULUIX
Correspond to projecting the rows (data points) onto the span
of Vy, or the columns (features) onto the span of U,

Row (data point) compression Column (feature) compression

10000 10°

bedrooms| floors| sale price
home 1 2 2 195,000
home 2 4 1 310,000

home n 5 3 450,000

10



THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = argmin un, _p gernxd |[X — BJ|¢ is given by:

_Xg = XViVj = UpUpX

Correspond to projecting the rows (data points) onto the span
of V, or the columns (features) onto the span of U,

nxd orthonormal  positive diagonal ~ orthonormal
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = argmin un, _p gernxd |[X — BJ|¢ is given by:

Xp = XViV}, = UUEX

Correspond to projecting the[rows (data points) onto the span
of V,, or the columns (featufe$) onto the span of U,

n x d (rank k) orthonormal  positive diagonal ~ orthonormal
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = argmin un, _p gernxd |[X — BJ|¢ is given by:

Xp = XVRV], = ULULX = UpX,V),

Correspond to projecting the rows (data points) onto the span
of Vy, or the columns (features) onto the span of U,

nxd (rank-k)  orthonormal positive diagonal ~ orthonormal

02 V, T vl:
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION
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The best low-rank approximation to X: ranlc 2P X
Xp = argmin o —k sernxd ||[X — B||¢ is given by:
X, = U,UX = Ukzkvk
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X € R4 data matrix, U € RMX1nkX). matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = argmin o —k sernx |[X — B||¢ is given by:

Xp = XViVj, = URURX = UpZ,V
2TRT ke -
Lo kot T N X W,
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X € R4 data matrix, U € RMX1nkX). matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




APPLICATIONS OF LOW-RANK APPROXIMATION
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Rest of Class: Examples of how low-rank approximation is
applied in a variety of data science applications.



