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LOGISTICS

- Problem Set 3 is due next Friday 10/23, 8pm.

- Problem set grades seem to be strongly correlated with
whether people are working in groups. So if you don’t have a
group, | encourage you to join one. There are multiple
people looking so post on Piazza to find some.

- This week’s quiz due Monday at 8pm.



SUMMARY

Last Class: Low-Rank Approximation

- When data lies in a k-dimensional subspace V, we can
perfectly embed into k dimensions using an orthonormal
span V e RIxk.

- When data lies close to V, the optimal embedding in that
space is given by projecting onto that space.

XW' = argmin |X— B2
B with rows in V
This Class: Finding V via eigendecomposition.
- How do we find the best low-dimensional subspace to
approximate X?
- PCA and its connection to eigendecomposition.



BASIC SET UP

Reminder of Set Up: Assume that X;, ..., X, lie close to any
k-dimensional subspace V of R?. Let X € R"*? be the data matrix.
d-dimensional space d-dimensional space

k-dim. subspace V k-dim. subspace V

Let V4, ...,V be an orthonormal basis for V and V € R%** be the
matrix with these vectors as its columns.

- W7 e R4 s the projection matrix onto V.

- X = X(WT). Gives the closest approximation to X with rows in V.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, .. . , V. 3




DUAL VIEW OF LOW-RANK APPROXIMATION
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BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € R%** the data matrix can be approximated as
XVV'. XV gives optimal embedding of X in V.

How do we find V (equivalently V)?
argmin X =XWT|2= argmax  |[XV|%

orthonormal VERY %k orthonormal VERd Xk
d-dimensional space

k-dim. subspace V



SOLUTION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by:

" k
argmax IXVI[E =D IVIEIS =D IXV3
i=1 J=1

orthonormal VERYX
Surprisingly, can find the columns of V, V4, ...V}, greedily.

Vi = argmax || Xv|3vV'X"Xv.
Fwith [[v],=1

v = arg max VIXTXV.
7with [[Vi=1, (7,7)=0

Ve = arg max VIXTXV.
Fwith [[vil,=1, (7,7)=0 Vj<k

These are exactly the top k eigenvectors of X'X.

X1,...,%n € R% data points, X € R"*9: data matrix, V4, ..., V, € R%: orthogo-
nal basis for subspace V. V e R9>k: matrix with columns V4, .. ., V. 6




REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: X € RY is an eigenvector of a matrix A € R9x9 if
AX = XX for some scalar A (the eigenvalue corresponding to X).

- That is, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors
Vi,..., V4. Let V € R4 have these vectors as columns.

[ N B | | |
AV = |AV; A, - AVl = [NV A oo AV =VA

Yields eigendecomposition: AW = A = VAV’



REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

dxd orthonormal diagonal orthonormal

A
22

A =| v, V Va A VT

Typically order the eigenvectors in decreasing order:
M> A > . > g



COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric A, the eigenvectors are
given via the greedy optimization:

Vi = argmax V'AV.
7 with ||v]|,=1

v, = arg max VAV
Vwith ||v]|,=1, (V,V1)=0
Vg = arg max VTAV.

Fwith [|v|l;=1, (7,7,)=0 Vj<d

© VIAV; = \; - VTV, = ), the j" largest eigenvalue.

- The first k eigenvectors of XX (corresponding to the largest k
eigenvalues) are exactly the directions of greatest variance in X
that we use for low-rank approximation. 9



LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

XX =|%%|V A A

6 d-dimensional space

k-dim. subspace V
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LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

Upshot: Letting Vi, have columns 4, ...,V corresponding to
the top k eigenvectors of the covariance matrix X’X, Vj, is the
orthogonal basis minimizing

X — XVRVE|[,

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand
using eigenvalues of X’X.

X1,...,% € R data points, X € R"%%: data matrix, V4,...,V, € R% top
eigenvectors of X'X, Vi, € R9XF: matrix with columns v, . . ., V.
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SPECTRUM ANALYSIS

Let Vs,. ..,V be the top k eigenvectors of X'X (the top k
principal components). Approximation error is:

IX — XV VE|[F = Hantr(xTX) — ||xvfev RlIFEr(VEXTXV,)

= Z Ni(XTX) — Z vIXTXV,
i=1 i=1
kR d

d
=S A =S = S a0
i=1 i=1 /

- For any matrix A, [[Al|Z = 57 |d||5 = tr(ATA) (sum of
diagonal entries = sum elgenvawes).

X1,...,%X, € RY: data points, X € R">9: data matrix, v4,...,¥%, € R top
eigenvectors of X7X, Vi, € R9%F: matrix with columns v, . . ., V.




SPECTRUM ANALYSIS

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
IX = XVeVE[E = > X(X'X)
i=k+1

784 dimensional vec

dxd
; =]
A
error of optimal low rank
approximation 7
X,...,% € RY data points, X € R"*9: data matrix, v4,...,¥%, € R top

eigenvectors of X'X, Vi, € RI*k: matrix with columns v, . ..

, V.
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SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix X'X (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how
close Xi,..., X, are to a low-dimensional subspace).

784 dimensional vectors 784 dimensional vectors

eigendecomposition
T RE e

Xi,...,% € RY data points, X € R"*9: data matrix, v4,...,V, € R top
eigenvectors of X7X, Vi, € R9%F: matrix with columns v, . . ., V.

eigende

Eigenvalue
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SPECTRUM ANALYSIS

784 dimensional vectors

eigendecomposition
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Exercises:

1. Show that the eigenvalues of X'X are always positive. Hint:
Use that \; = \7/TXTX\7,<.

2. Show that for symmetric A, the trace is the sum of
eigenvalues: tr(A) = Y"1, Ai(A).
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SUMMARY

- Many (most) datasets can be approximated via projection
onto a low-dimensional subspace.

- Find this subspace via a maximization problem:

max  ||XV||%.
orthonormal V

- Greedy solution via eigendecomposition of X'X.

- Columns of V are the top eigenvectors of X'X.

- Error of best low-rank approximation (compressibility of
data) is determined by the tail of X'X's eigenvalue spectrum.
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INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features

10000* 10* =
are correlated.
floors sale price
home 1 2 2 195,000
home 2 a 1 310,000
home n 3 3 450,000

Our compressed dataset is C = XV, where the columns of Vj, are the
top k eigenvectors of X'X.

C7C = VIX'XV, = VIVAVTV,, = A,

l.e, all correlations have been
removed. Maximal compression.

Xi,...,%X € RY data points, X € R">9: data matrix, v4,...,¥, € R top
eigenvectors of XX, V,, € RY>k: matrix with columns V4, ..., V.
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