COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.

Lecture 14

LOGISTICS

Midterm:

- · Problem Set 2 grades are posted in Gradescope.
- · Mean/median were 28/35.
- · I posted Problem Set 3 last night. Due Friday 10/23 at 8pm.
- · We are working on grading the midterm this week.
- Final will be Thursday/Friday, 12/3-12/4. Same set up as the midterm.
- · Quizzes will resume this week.

LAST CLASS: EMBEDDING WITH ASSUMPTIONS

Set Up: Assume that data points $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ lie in some k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for V and $V \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

$$\|\mathbf{V}^{\mathsf{T}}\vec{x}_{i} - \mathbf{V}^{\mathsf{T}}\vec{x}_{j}\|_{2}^{2} = \|\vec{x}_{i} - \vec{x}_{j}\|_{2}^{2}.$$

Letting $\tilde{x}_i = \mathbf{V}^T \vec{x}_i$, we have a perfect embedding from \mathcal{V} into \mathbb{R}^k .

PROJECTION VIEW

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^T = CV^T$$
 (Implies rank(X) $\leq k$)

• $\mathbf{V}\mathbf{V}^T$ is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace \mathcal{V} .

3

PROPERTIES OF PROJECTION MATRICES

Quick Exercise 1: Show that VV^T is idempotent. I.e., $(VV^T)(VV^T)\vec{y} = (VV^T)\vec{y}$ for any $\vec{y} \in \mathbb{R}^d$.

Why does this make sense intuitively?

Quick Exercise 2: Show that $VV^T(I - VV^T) = 0$ (the projection is orthogonal to its complement).

Give the Pythagorean Theorem: Show that for any $\vec{y} \in \mathbb{R}^d$,

$$\|\vec{y}\|_{2}^{2} = \|(\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y}\|_{2}^{2} + \|\vec{y} - (\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y}\|_{2}^{2}.$$

EMBEDDING WITH ASSUMPTIONS

Main Focus of Today: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

- How do we find \mathcal{V} and \mathbf{V} ?
- · How good is the embedding?

A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• The rows of **X** can be approximately reconstructed from a basis of *k* vectors.

DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price		bedrooms
home 1	2	2	1800	2	200,000	195,000	home 1	2
home 2	4	2.5	2700	1	300,000	310,000	home 2	4
•								
•		•			•	•		
•		•	•		•	•		.
home n	5	3.5	3600	3	450,000	450,000	home n	5 7

BEST FIT SUBSPACE

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find V (equivilantly V)?

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times h}}{\arg \min} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}\|_F^2 = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}})_{i,j})^2 = \sum_{i=1}^n \|\vec{x}_i - \mathbf{V} \mathbf{V}^{\mathsf{T}} \vec{x}_i\|_2^2 \quad \text{arg orthonormal V} = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}})_{i,j})^2 = \sum_{i=1}^n \|\vec{x}_i - \mathbf{V} \mathbf{V}^{\mathsf{T}} \vec{x}_i\|_2^2 \quad \text{orthonormal V} = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}})_{i,j})^2 = \sum_{i=1}^n \|\vec{x}_i - \mathbf{V} \mathbf{V}^{\mathsf{T}} \vec{x}_i\|_2^2 \quad \text{orthonormal V} = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}})_{i,j})^2 = \sum_{i=1}^n \|\vec{x}_i - \mathbf{V} \mathbf{V}^{\mathsf{T}} \vec{x}_i\|_2^2 \quad \text{orthonormal V} = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}})_{i,j})^2 = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}})_{i,j})^2 = \sum_{i=1}^n \|\vec{x}_i - \mathbf{V} \mathbf{V}^{\mathsf{T}} \vec{x}_i\|_2^2 \quad \text{orthonormal V} = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}})_{i,j})^2 = \sum_{i=1}^n \|\vec{x}_i - \mathbf{V} \mathbf{V}^{\mathsf{T}} \vec{x}_i\|_2^2 \quad \text{orthonormal V} = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}})_{i,j})^2 = \sum_{i=1}^n \|\vec{x}_i - \mathbf{V} \mathbf{V}^{\mathsf{T}} \vec{x}_i\|_2^2 \quad \text{orthonormal V} = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}})_{i,j})^2 = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}})_{i,j}^2 = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}})_{i,j}^2)^2 = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}})_{i,j}^2 = \sum_{i,$$

d-dimensional space

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\ \mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

BEST FIT SUBSPACE

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 = \sum_{i=1}^n \|\mathbf{V} \mathbf{V}^T \vec{\mathbf{X}}_i\|_2^2 \quad \underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X} \mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{\mathbf{X}}_i\|_2^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{\mathbf{X}}_$$

Columns of **V** are 'directions of greatest variance' in the data.

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\ \mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

- · Many datasets lie close to a *k*-dimensionsal subspace.
- · Can take advantage of this to do data-dependent linear dimensionality reduction (low-rank approximation).
- Dual view: both rows (data points) and columns (features) are approximated spanned by a small number of vectors.
- Step 1: Find this subspace by finding the directions of greatest variance in the data. I.e., maximize $\|\mathbf{XV}\|_F^2$.
- Step 2: Get best approximation to the data points in this subspace via projection matrix $\mathbf{V}\mathbf{V}^T$. $\mathbf{V} \in \mathbb{R}^{d \times k}$ used as linear mapping from d-dimensional to k-dimensional space.