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LOGISTICS
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- Problem Set 2 grades are posted in Gradescope.

- Mean/median were 28/35.

- | posted Problem Set 3 last night. Due Friday 10/23 at 8pm.
- We are working on grading the midterm this week.

- Final will be Thursday/Friday, 12/3-12/4. Same set up as the
midterm.

- Quizzes will resume this week.



LAST CLASS: EMBEDDING WITH ASSUMPTIONS

Set Up: Assume that data points X, ..., X, € ]R;d lie in some
k-dimensional subspace V of RY.
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Let V4, ..., V, be an orthonormal basis for V and V. € R9*F be the

matrix with these vectors as its columns.
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Letting X; = V'X;, we have a perfect embedding from V into R,
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PROJECTION VIEW

Claim: If X;,...,X, lie in a k-dimensional subspace V with
orthonormal ba5|s V € R¥*k the data matrix can bewrﬁteen

X=Xxw' =V’ /1 V] [\/\/j
- C c= XV
- W/ is a projection matrix, which projects the rows of X (the data

points X1, ..., X, onto the subspace V.
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Xi,...,% € RY: data points, X € R"*?: data matrix, ¥, . .., V, € RY: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V. 3




PROJECTION VIEW

Claim: If X;,...,X, lie in a k-dimensional subspace V with
orthonormal basis V € R¥*k, the data matrix can be written as

X = XW' = ¢V (Implies rank(X) < k)
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- Wlisa , which projects the rows of X (the data
points X1, ..., X, onto the subspace V. Y b
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Xi,...,% € RY: data points, X € R"*?: data matrix, ¥, . .., V, € RY: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V. 3




PROJECTION VIEW
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Xi,...,% € RY: data points, X € R"*?: data matrix, ¥, . .., V, € RY: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V. 3
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Quick Exercise 1: Show that W' is idempotent. l.e, \/ Ts mwﬂ\,)

(WT)Y(WY = (WT)y for any y € RY. Naveis .
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Why does this make sense intuitively? &VXVVI)j/ : \/\/'/OT\/ kg
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Quick Exercise 2: Show that WW'(1 — W') = 0 ( the projection is
orthogonal to its complement). \/\}II(I-V\D N NUENNAY VAR

Give the Pythagorean Theorem: Show that for any y € RY, = 0.
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EMBEDDING WITH ASSUMPTIONS
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Main Focus of Today: Assume that data points X, .. ., Xn lie close to
any k-dimensional subspace V of RY. (_J“ifzﬂﬂtg
\/ _Hi .
Nl & [l s e C g ] -0
W bévwv_dl/ vy V2 \Ar

N

@-w) = ’L,'&\l‘

PMQ/D?@LW @1 @T—L L
‘\szn/-u\, I\\AHLL - H \/\/) ”_L % (\(f‘\:l\/% lz

Ight = oy g e e oy X
e
T O, T’ (-Wy Ty r-w ‘A'
® DT&\?]SQ/ ++\)(1\—d\I\ST}~3 0{ ) X \lo 5




EMBEDDING WITH ASSUMPTIONS

Main Focus of Today: Assume that data points X1, ..., X, lie close to
any k-dimensional subspace V of RY. e
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k-dim. subspace V



EMBEDDING WITH ASSUMPTIONS

Main Focus of Today: Assume that data points X1, ..., X, lie close to

any k-dimensional subspace V of RY.
d-dimensional space

k-dim. subspace V

Letting Vi, ..., V, be an orthonormal basis for V and V € R?** be the
matrix with these vectors as its columns, V'X; € RF is still a good
embedding for x; € RY.



EMBEDDING WITH ASSUMPTIONS

Main Focus of Today: Assume that data points X1, ..., X, lie close to

any k-dimensional subspace V of RY.
d-dimensional space

k-dim. subspace V

Letting Vi, ..., V, be an orthonormal basis for V and V € R?** be the
matrix with these vectors as its columns, V'X; € RF is still a good
embedding for x; € R%. The key idea behind low-rank approximation
and principal component analysis (PCA).



EMBEDDING WITH ASSUMPTIONS

Main Focus of Today: Assume that data points X1, ..., X, lie close to

any k-dimensional subspace V of RY.
d-dimensional space

k-dim. subspace V

Letting Vi, ..., V, be an orthonormal basis for V and V € R?** be the
matrix with these vectors as its columns,_\_/z,- e RFis still a good
embedding for x; € R%. The key idea behind low-rank approximation
and principal component analysis (PCA).

- How do we find V and V?

* How good is the embedding? 5



A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect Xi,...,X, € RY to lie close to a
k-dimensional subspace?



A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect Xi,...,X, € RY to lie close to a

k-dimensional subspace?

- The rows of X can be approximately reconstructed from a
basis of k vectors.



A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect Xi,...,X, € RY to lie close to a
. . 1 -
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- The rows of X can be approximately reconstructed from a
basis of k vectors. 1
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DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect X;,...,X, € R? to lie close to a
k-dimensional subspace?



DUAL VIEW OF LOW-RANK APPROXIMATION
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Question: Why might we expect X;, ..., X, € RY to lie close to a
k-dimensional subspace? e X c'wn‘f- 1&

- Equivalently, the columns of X are approx. spanned by k vectors.



DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect X;, ..., X, € RY to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

bedrooms| bathrooms| sq.ft.|floors| list price|sale price . -~
home 1 2 2 1800 | 2 | 200,000 | 195,000
4 2.5 2700 1 300,000 310,000

home 2

home n 5 3.5 3600 3 450,000 | 450,000
7




DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect X;, ..., X, € RY to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

bedrooms| bathrooms| sq.ft.|floors
home 1 2 2 1800 | 2
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DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect X;, ..., X, € RY to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

bedrooms| floors| list price| sale price
home 1 2 2 | 200,000 | 195,000
home 2 4 1 300,000 | 310,000

home n 5 3 | 450,000 | 450,000




DUAL VIEW OF LOW-RANK APPROXIMATION
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Question: Why might we expect X;, ..., X, € RY to lie close to a YW

k-dimensional subspace?
- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

10000* 10* =~
bedrooms floors sale price
homel | o 2 195,000
home 2 { 4 1 310,000
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home n 5 3 450,000




BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as

XVWV'. XV gives optimal embedding of X in V.

\ \
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X1,...,% € RY: data points, X € R"*%: data matrix, v1, . .., v, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V. g




BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVWV'. XV gives optimal embedding of X in V.

How do we find V (equivilantly V)?

X1,...,% € RY: data points, X € R"*%: data matrix, v1, . .., v, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.




BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approxmated as4
XVWV'. XV gives optimal embedding of X in V.
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X1,...,% € RY: data points, X € R"*%: data matrix, v1, . .., v, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V. g




BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVWV'. XV gives optimal embedding of X in V.
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X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V e R9>k: matrix with columns ¥, .. . , %,. .




BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVWV'. XV gives optimal embedding of X in V.

How do we find V (equivilantly V)?
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k-dim. subspace V

X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V e R9>k: matrix with columns ¥, .. . , %,.




BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVWV'. XV gives optimal embedding of X in V.

How do we find V (equivilantly V)?
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orthonormal VERI*F ~~—0u0 — i
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k-dim. subspace V

X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V e R9>k: matrix with columns ¥, .. . , %,.




BEST FIT SUBSPACE

V minimizing ||X — XW'||2 is given by:

argmax ‘XVVT”F Z VWX 13

orthonormal VERdxk S=—=

X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, ..., v, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, .. ., V.




BEST FIT SUBSPACE
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X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, ..., v, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, .. ., V.




BEST FIT SUBSPACE

V minimizing ||X — XW'||2 is given by:
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X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, ..., v, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, .. ., V.




BEST FIT SUBSPACE

V minimizing ||X — XW'||2 is given by:

kR n
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orthonormal VER?* j=1 =1

Columns of V are ‘directions of greatest variance’ in the data.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, ..., v, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, .. ., V.




BEST FIT SUBSPACE

V minimizing ||X — XW'||2 is given by:
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Columns of V are ‘directions of greatest variance’ in the data.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, ..., v, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, .. ., V.




BEST FIT SUBSPACE

V minimizing ||X — XW'||2 is given by:

kR n
argmax_ x|} = va %3 =03 (5.%)?

orthonormal VER?* j=1 =1

Columns of V are ‘directions of greatest variance’ in the data.

X1,...,% € RY: data points, X € R"*%: data matrix, ¥4, ..., v, € R orthogo-
nal basis for subspace V. V e R9>*: matrix with columns V4, .. . , V.




SUMMARY

- Many datasets lie close to a k-dimensionsal subspace.

- Can take advantage of this to do data-dependent linear
dimensionality reduction (low-rank approximation).

- Dual view: both rows (data points) and columns (features)
are approximated spanned by a small number of vectors.
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SUMMARY

- Many datasets lie close to a k-dimensionsal subspace.

- Can take advantage of this to do data-dependent linear
dimensionality reduction (low-rank approximation).

- Dual view: both rows (data points) and columns (features)
are approximated spanned by a small number of vectors.

- Step 1: Find this subspace by finding the directions of
greatest variance in the data. l.e/ maximize ||XV|4
- Step 2: Get best approximation to the data points in this

subspace via projection matrix W'. V € R9** used as linear
mapping from d- d|menS|onal to k-dimensional space.

X\}\) e n >(\/

10



