

COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.

Lecture 14

LOGISTICS

Midterm

- · Problem Set 2 grades are posted in Gradescope.
- · Mean/median were 28/35.
- I posted Problem Set 3 last night. Due Friday 10/23 at 8pm.
- · We are working on grading the midterm this week.
- Final will be Thursday/Friday, 12/3-12/4. Same set up as the midterm.
- · Quizzes will resume this week.

LAST CLASS: EMBEDDING WITH ASSUMPTIONS

Set Up: Assume that data points $\underline{\vec{x}_1}, \dots, \underline{\vec{x}_n} \in \underline{\mathbb{R}^d}$ lie in some k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Different from I?

Vi cot rundom

Vi vi ot rundom

No cholen ind. of lundom

K-dim. subspace V

Tomake's no assurption

For II ne have for a case pranctive

{\(\sqrt{\varphi_1 \varphi_2 \cdot \cdot \sqrt{\varphi_1 \cdot \c

Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\underline{\mathbf{V}} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

$$\|\mathbf{V}^{\mathsf{T}}\vec{\mathbf{x}}_{i} - \mathbf{V}^{\mathsf{T}}\vec{\mathbf{x}}_{j}\|_{2}^{2} = \|\vec{\mathbf{x}}_{i} - \vec{\mathbf{x}}_{j}\|_{2}^{2}.$$

Letting $\tilde{x}_i = \mathbf{V}^T \vec{x}_i$, we have a perfect embedding from \mathcal{V} into \mathbb{R}^k .

PROJECTION VIEW

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$\overline{X} = \overline{X}\overline{A}\overline{A}$$
 $= \overline{C}A_{\perp}$

• VV^T is a projection matrix, which projects the rows of X (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace \mathcal{V} .

d-dimensional space

PROJECTION VIEW

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^T = CV^T$$
 (Implies rank(X) $\leq k$)

• \mathbf{WV}^T is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace \mathcal{V} .

PROJECTION VIEW

Claim: If $\vec{x_1}, \dots, \vec{x_n}$ lie in a k-dimensional subspace \mathcal{V} with $A : \mathcal{L} \times \mathcal{L}$

• \mathbf{W}^T is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace \mathcal{V} .

PROPERTIES OF PROJECTION MATRICES

Quick Exercise 1: Show that \mathbf{W}^T is idempotent. I.e., $(\mathbf{V}\mathbf{V}^{\mathsf{T}})(\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y} = (\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y}$ for any $\vec{y} \in \mathbb{R}^d$.

Why does this make sense intuitively? $(V^{\bar{I}})(V^{\bar{I}})y : VV$ Quick Exercise 2: Show that $VV^{T}(I - VV^{T}) = 0$ (the projection is

orthogonal to its complement). $\sqrt{1/1-\sqrt{1}} = \sqrt{1-\sqrt{1}}$ Give the Pythagorean Theorem: Show that for any $\vec{y} \in \mathbb{R}^d$,

112+6/12= 11a/12+ 116/12+2 atb 1 5/3: TVV Main Focus of Today: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . (I) 1/W/ 1/EJ 1/2+6/12 + 1/2 + 1/3 1-dimensional space 11/1/= 11 Wys. + = [wy+(I-w])yJT[wy+(I-w])y]

1 y Wy + N(I-W) (I-W) y

Main Focus of Today: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Main Focus of Today: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace V of \mathbb{R}^d .

Letting $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$.

Main Focus of Today: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace V of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

Main Focus of Today: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\underline{\mathbf{V}}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

- How do we find \mathcal{V} and \mathbf{V} ?
- · How good is the embedding?

A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• The rows of **X** can be approximately reconstructed from a basis of *k* vectors.

A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a 11x; -x; 112 = 2 k-dimensional subspace?

• The rows of X can be approximately reconstructed from a

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

イト・とと

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace? (n)

 \cdot Equivalently, the columns of **X** are approx. spanned by k vectors.

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
		•			•	
		•			•	•
•	•	•	•	•	•	•
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
					•	•
•	•	•	•	•	•	•
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
•						
•						
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

10000* bathrooms+ 10* (sq. ft.) ≈ list price							
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price	
home 1 home 2	2 4	2 2.5	1800 2700	2 1	200,000	195,000 310,000	
	, .						
•					•		
•							
home n	5	3.5	3600	3	450,000	450,000	

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find V (equivilantly V)?

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as $\mathbf{X}\mathbf{V}\mathbf{V}^T$. $\mathbf{X}\mathbf{V}$ gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find $\mathcal V$ (equivilantly $\mathbf V$)?

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\operatorname{arg min}} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}\|_{F}^{2} = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}})_{i,j})^{2} = \sum_{i=1}^{n} \|\vec{\mathbf{x}}_{i} - \mathbf{V}^{\mathsf{T}} \vec{\mathbf{x}}_{i}\|_{2}^{2}$$

d-dimensional space

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find \mathcal{V} (equivilantly \mathbf{V})?

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find \mathcal{V} (equivilantly \mathbf{V})?

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}{\arg\max} \, \| \underbrace{\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}}_{F} \|_{F}^{2} = \sum_{i=1}^{n} \|\mathbf{V}\mathbf{V}^{\mathsf{T}}\vec{\mathbf{X}}_{i}\|_{2}^{2}$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\vec{\mathbf{x}}_1,\ldots,\vec{\mathbf{x}}_n\in\mathbb{R}^d$$
: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k\in\mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k$.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}{\arg\max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T\vec{x}_i\|_2^2 = \underbrace{\sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2}_{\substack{\mathbf{V}_i^T\mathbf{X}_i\\\mathbf{V}_{\mathbf{A}}\\\mathbf{V}_{\mathbf{K}}^T}} \underbrace{\int_{\mathbf{V}_i^T\mathbf{X}_i}^{\mathbf{V}_i^T\mathbf{X}_i} \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2}_{\substack{\mathbf{V}_i^T\mathbf{X}_i\\\mathbf{V}_{\mathbf{K}}^T\mathbf{X}_i}}$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{x}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2$$

Columns of **V** are 'directions of greatest variance' in the data.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{x}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2$$

Columns of ${\bf V}$ are 'directions of greatest variance' in the data.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{x}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2$$

Columns of ${\bf V}$ are 'directions of greatest variance' in the data.

SUMMARY

- · Many datasets lie close to a *k*-dimensionsal subspace.
- · Can take advantage of this to do data-dependent linear dimensionality reduction (low-rank approximation).
- Dual view: both rows (data points) and columns (features) are approximated spanned by a small number of vectors.

SUMMARY

- · Many datasets lie close to a *k*-dimensionsal subspace.
- · Can take advantage of this to do data-dependent linear dimensionality reduction (low-rank approximation).
- Dual view: both rows (data points) and columns (features) are approximated spanned by a small number of vectors.
- Step 1: Find this subspace by finding the directions of greatest variance in the data. I.e. \int maximize $\|XV\|_F^2$
- Step 2: Get best approximation to the data points in this subspace via projection matrix $\mathbf{V}\mathbf{V}^T$. $\mathbf{V} \in \mathbb{R}^{d \times k}$ used as linear mapping from d-dimensional to k-dimensional space.

