COMPSCI 514: ALGORITHMS FOR DATA SCIENCE Cameron Musco University of Massachusetts Amherst. Fall 2020. Lecture 14 ### LOGISTICS # Midterm - · Problem Set 2 grades are posted in Gradescope. - · Mean/median were 28/35. - I posted Problem Set 3 last night. Due Friday 10/23 at 8pm. - · We are working on grading the midterm this week. - Final will be Thursday/Friday, 12/3-12/4. Same set up as the midterm. - · Quizzes will resume this week. # LAST CLASS: EMBEDDING WITH ASSUMPTIONS **Set Up:** Assume that data points $\underline{\vec{x}_1}, \dots, \underline{\vec{x}_n} \in \underline{\mathbb{R}^d}$ lie in some k-dimensional subspace \mathcal{V} of \mathbb{R}^d . Different from I? Vi cot rundom Vi vi ot rundom No cholen ind. of lundom K-dim. subspace V Tomake's no assurption For II ne have for a case pranctive {\(\sqrt{\varphi_1 \varphi_2 \cdot \cdot \sqrt{\varphi_1 \cdot \c Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\underline{\mathbf{V}} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. $$\|\mathbf{V}^{\mathsf{T}}\vec{\mathbf{x}}_{i} - \mathbf{V}^{\mathsf{T}}\vec{\mathbf{x}}_{j}\|_{2}^{2} = \|\vec{\mathbf{x}}_{i} - \vec{\mathbf{x}}_{j}\|_{2}^{2}.$$ Letting $\tilde{x}_i = \mathbf{V}^T \vec{x}_i$, we have a perfect embedding from \mathcal{V} into \mathbb{R}^k . ### PROJECTION VIEW **Claim:** If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $$\overline{X} = \overline{X}\overline{A}\overline{A}$$ $= \overline{C}A_{\perp}$ • VV^T is a projection matrix, which projects the rows of X (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace \mathcal{V} . # d-dimensional space ### PROJECTION VIEW **Claim:** If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $$X = XVV^T = CV^T$$ (Implies rank(X) $\leq k$) • \mathbf{WV}^T is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace \mathcal{V} . #### PROJECTION VIEW Claim: If $\vec{x_1}, \dots, \vec{x_n}$ lie in a k-dimensional subspace \mathcal{V} with $A : \mathcal{L} \times \mathcal{L}$ • \mathbf{W}^T is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace \mathcal{V} . # PROPERTIES OF PROJECTION MATRICES Quick Exercise 1: Show that \mathbf{W}^T is idempotent. I.e., $(\mathbf{V}\mathbf{V}^{\mathsf{T}})(\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y} = (\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y}$ for any $\vec{y} \in \mathbb{R}^d$. Why does this make sense intuitively? $(V^{\bar{I}})(V^{\bar{I}})y : VV$ Quick Exercise 2: Show that $VV^{T}(I - VV^{T}) = 0$ (the projection is orthogonal to its complement). $\sqrt{1/1-\sqrt{1}} = \sqrt{1-\sqrt{1}}$ Give the Pythagorean Theorem: Show that for any $\vec{y} \in \mathbb{R}^d$, 112+6/12= 11a/12+ 116/12+2 atb 1 5/3: TVV Main Focus of Today: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . (I) 1/W/ 1/EJ 1/2+6/12 + 1/2 + 1/3 1-dimensional space 11/1/= 11 Wys. + = [wy+(I-w])yJT[wy+(I-w])y] 1 y Wy + N(I-W) (I-W) y **Main Focus of Today:** Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . Main Focus of Today: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace V of \mathbb{R}^d . Letting $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. Main Focus of Today: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace V of \mathbb{R}^d . Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA). Main Focus of Today: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\underline{\mathbf{V}}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA). - How do we find \mathcal{V} and \mathbf{V} ? - · How good is the embedding? # A STEP BACK: WHY LOW-RANK APPROXIMATION? **Question:** Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace? # A STEP BACK: WHY LOW-RANK APPROXIMATION? **Question:** Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace? • The rows of **X** can be approximately reconstructed from a basis of *k* vectors. # A STEP BACK: WHY LOW-RANK APPROXIMATION? **Question:** Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a 11x; -x; 112 = 2 k-dimensional subspace? • The rows of X can be approximately reconstructed from a **Question:** Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace? イト・とと **Question:** Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace? (n) \cdot Equivalently, the columns of **X** are approx. spanned by k vectors. **Question:** Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace? • Equivalently, the columns of **X** are approx. spanned by *k* vectors. | | bedrooms | bathrooms | sq.ft. | floors | list price | sale price | |--------|----------|-----------|--------|--------|------------|------------| | home 1 | 2 | 2 | 1800 | 2 | 200,000 | 195,000 | | home 2 | 4 | 2.5 | 2700 | 1 | 300,000 | 310,000 | | | | | | | | | | | | • | | | • | | | | | • | | | • | • | | • | • | • | • | • | • | • | | | | | | | | | | | | | | | | | | home n | 5 | 3.5 | 3600 | 3 | 450,000 | 450,000 | **Question:** Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace? • Equivalently, the columns of **X** are approx. spanned by *k* vectors. | | bedrooms | bathrooms | sq.ft. | floors | list price | sale price | |--------|----------|-----------|--------|--------|------------|------------| | home 1 | 2 | 2 | 1800 | 2 | 200,000 | 195,000 | | home 2 | 4 | 2.5 | 2700 | 1 | 300,000 | 310,000 | • | • | | • | • | • | • | • | • | • | | | | | | | | | | | | | | | | | | home n | 5 | 3.5 | 3600 | 3 | 450,000 | 450,000 | **Question:** Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace? • Equivalently, the columns of **X** are approx. spanned by *k* vectors. | | bedrooms | bathrooms | sq.ft. | floors | list price | sale price | |--------|----------|-----------|--------|--------|------------|------------| | home 1 | 2 | 2 | 1800 | 2 | 200,000 | 195,000 | | home 2 | 4 | 2.5 | 2700 | 1 | 300,000 | 310,000 | • | | | | | | | | • | home n | 5 | 3.5 | 3600 | 3 | 450,000 | 450,000 | **Question:** Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace? • Equivalently, the columns of **X** are approx. spanned by *k* vectors. | 10000* bathrooms+ 10* (sq. ft.) ≈ list price | | | | | | | | |--|----------|-----------|--------------|--------|------------|--------------------|--| | | bedrooms | bathrooms | sq.ft. | floors | list price | sale price | | | home 1
home 2 | 2
4 | 2 2.5 | 1800
2700 | 2
1 | 200,000 | 195,000
310,000 | | | | , . | | | | | | | | • | | | | | • | | | | • | | | | | | | | | home n | 5 | 3.5 | 3600 | 3 | 450,000 | 450,000 | | If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} . If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} . How do we find V (equivilantly V)? If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as $\mathbf{X}\mathbf{V}\mathbf{V}^T$. $\mathbf{X}\mathbf{V}$ gives optimal embedding of \mathbf{X} in \mathcal{V} . How do we find $\mathcal V$ (equivilantly $\mathbf V$)? $$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\operatorname{arg min}} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}\|_{F}^{2} = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}})_{i,j})^{2} = \sum_{i=1}^{n} \|\vec{\mathbf{x}}_{i} - \mathbf{V}^{\mathsf{T}} \vec{\mathbf{x}}_{i}\|_{2}^{2}$$ d-dimensional space If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} . If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} . # How do we find \mathcal{V} (equivilantly \mathbf{V})? If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} . # How do we find \mathcal{V} (equivilantly \mathbf{V})? **V** minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by: $$\underset{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}{\arg\max} \, \| \underbrace{\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}}_{F} \|_{F}^{2} = \sum_{i=1}^{n} \|\mathbf{V}\mathbf{V}^{\mathsf{T}}\vec{\mathbf{X}}_{i}\|_{2}^{2}$$ V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by: $$\vec{\mathbf{x}}_1,\ldots,\vec{\mathbf{x}}_n\in\mathbb{R}^d$$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k\in\mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k$. **V** minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by: $$\underset{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}{\arg\max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T\vec{x}_i\|_2^2 = \underbrace{\sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2}_{\substack{\mathbf{V}_i^T\mathbf{X}_i\\\mathbf{V}_{\mathbf{A}}\\\mathbf{V}_{\mathbf{K}}^T}} \underbrace{\int_{\mathbf{V}_i^T\mathbf{X}_i}^{\mathbf{V}_i^T\mathbf{X}_i} \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2}_{\substack{\mathbf{V}_i^T\mathbf{X}_i\\\mathbf{V}_{\mathbf{K}}^T\mathbf{X}_i}}$$ **V** minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by: $$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{x}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2$$ Columns of **V** are 'directions of greatest variance' in the data. **V** minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by: $$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{x}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2$$ Columns of ${\bf V}$ are 'directions of greatest variance' in the data. **V** minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by: $$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{x}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2$$ Columns of ${\bf V}$ are 'directions of greatest variance' in the data. #### **SUMMARY** - · Many datasets lie close to a *k*-dimensionsal subspace. - · Can take advantage of this to do data-dependent linear dimensionality reduction (low-rank approximation). - Dual view: both rows (data points) and columns (features) are approximated spanned by a small number of vectors. #### **SUMMARY** - · Many datasets lie close to a *k*-dimensionsal subspace. - · Can take advantage of this to do data-dependent linear dimensionality reduction (low-rank approximation). - Dual view: both rows (data points) and columns (features) are approximated spanned by a small number of vectors. - Step 1: Find this subspace by finding the directions of greatest variance in the data. I.e. \int maximize $\|XV\|_F^2$ - Step 2: Get best approximation to the data points in this subspace via projection matrix $\mathbf{V}\mathbf{V}^T$. $\mathbf{V} \in \mathbb{R}^{d \times k}$ used as linear mapping from d-dimensional to k-dimensional space.