COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.

Lecture 12

LOGISTICS

- Midterm will be next Thursday-Friday. See webpage for study guide/practice questions.
- · No quiz this upcoming week.
- · I will hold extra office hours next Wednesday at 2pm.
- Pratheba has expanded her office hours to: Monday 2-3pm, Wednesday 1-2pm, and Friday 1-2pm, starting this upcoming week.

SUMMARY

Last Class: Finished Up Johnson-Lindenstrauss Lemma

- · Completed the proof of the Distributional JL lemma.
- Discussed an application to k-means clustering.
- · Started discussion of high-dimensional geometry.

Last Class: Finished Up Johnson-Lindenstrauss Lemma

- · Completed the proof of the Distributional JL lemma.
- Discussed an application to k-means clustering.
- · Started discussion of high-dimensional geometry.

This Class: High-Dimensional Geometry

- · Bizarre phemomena in high-dimensional space.
- · Connections to JL lemma and random projection.

ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in *d*-dimensional space? Answer: *d*.

ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in d-dimensional space? Answer: d. $\langle x, y \rangle = 0$

What is the largest set of unit vectors in *d*-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$? (think $\epsilon = .01$)

ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in *d*-dimensional space? Answer: *d*.

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$? (think $\epsilon = .01$) Answer: $2^{\Theta(\epsilon^2 d)}$.

An exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

poug

CURSE OF DIMENSIONALITY

Claim: In d-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

Implies:
$$\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T\vec{x}_j \in [\underline{1.98}, 2.02].$$

Even with an exponential number of random vector samples, we don't see any nearby vectors.

- · One version of the 'curse of dimensionality'.
- If all your distances are roughly the same, distance based methods (*k*-means clustering, nearest neighbors, SVMS, etc.) aren't going to work well.
- Distances are only meaningful if we have lots of structure and our data isn't just independent random vectors.

CURSE OF DIMENSIONALITY

Distances for Random Images:

Recall: The Johnson Lindenstrauss lemma states that if $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

Recall: The Johnson Lindenstrauss lemma states that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2 \le \|\mathbf{\Pi}\vec{x}_i - \mathbf{\Pi}\vec{x}_j\|_2^2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2.$$

Implies: If $\vec{x}_1, \ldots, \vec{x}_n$ are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon/8$), then $\frac{\Pi \vec{x}_1}{\|\Pi \vec{x}_1\|_2}, \ldots, \frac{\Pi \vec{x}_n}{\|\Pi \vec{x}_n\|_2}$ are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ).

Recall: The Johnson Lindenstrauss lemma states that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2 \le \|\mathbf{\Pi}\vec{x}_i - \mathbf{\Pi}\vec{x}_j\|_2^2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2.$$

Implies: If $\vec{x}_1, \ldots, \vec{x}_n$ are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon/8$), then $\frac{\Pi \vec{x}_1}{\|\Pi \vec{x}_1\|_2}, \ldots, \frac{\Pi \vec{x}_n}{\|\Pi \vec{x}_n\|_2}$ are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ).

· Algebra is a bit messy but a good exercise to partially work through.

orthogral;

Claim 1: n nearly orthogonal unit vectors in any dimension d can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 1: <u>n</u> nearly orthogonal unit vectors in any dimension d can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there can be roughly $2^{O(\epsilon^2 m)}$ nearly orthogonal unit vectors.

• For both of these to hold it must be that $n \le 2^{O(\epsilon^2 m)}$.

Claim 1: n nearly orthogonal unit vectors in any dimension d can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

- For both of these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$.
- I.e., $n = 2^{\log n} \le 2^{O(\epsilon^2 m)}$ and so $m \ge O\left(\frac{\log n}{\epsilon^2}\right)$.

Claim 1: n nearly orthogonal unit vectors in any dimension d can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

- For both of these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$.
- · I.e., $n = 2^{\log n} \le 2^{O(\epsilon^2 m)}$ and so $m \ge O\left(\frac{\log n}{\epsilon^2}\right)$.
- \cdot Tells us that the JL lemma is optimal up to constants.

Claim 1: n nearly orthogonal unit vectors in any dimension d can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

- For both of these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$.
- · I.e., $n = 2^{\log n} \le 2^{O(\epsilon^2 m)}$ and so $m \ge O\left(\frac{\log n}{\epsilon^2}\right)$.
- · Tells us that the JL lemma is optimal up to constants.
- *m* is chosen just large enough so that the geometry of *d*-dimensional space still holds on the *n* points in question after projection to a much lower dimensional space.

Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$.

Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$.

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface?

Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$.

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface?

Volume of a radius R ball is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} \cdot R^{d}$.

Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$.

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface? Answer: all but a $(1-\epsilon)^d \leq e^{-\epsilon d}$ fraction. Exponentially

Volume of a radius R ball is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} \cdot R^d$.

All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface.

All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \le 1$, nearly all will have $\|x\|_2 \ge 1 - \epsilon$.

All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \le 1$, nearly all will have $\|x\|_2 \ge 1 - \epsilon$.

• Isoperimetric inequality: the ball has the minimum surface area/volume ratio of any shape.

All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \le 1$, nearly all will have $\|x\|_2 \ge 1 - \epsilon$.

• Isoperimetric inequality: the ball has the minimum surface area/volume ratio of any shape.

• If we randomly sample points from any high-dimensional shape, nearly all will fall near its surface.

All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $||x||_2 \le 1$, nearly all will have $||x||_2 \ge 1 - \epsilon$.

• Isoperimetric inequality: the ball has the minimum surface area/volume ratio of any shape.

· All points are outliers.

What fraction of the cubes are visible on the surface of the cube?

a) 80% b) 50% c) 25% d) 10%

What fraction of the cubes are visible on the surface of the cube?

a) 80% b) 50% c) 25% d) 10%

$$\frac{10^3 - 8^3}{10^3} = \frac{1000 - 512}{1000} = .488.$$

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator? ξ

Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its

Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator? Answer: all but a $2^{\Theta(-\epsilon^2 d)}$ fraction. $\mathcal{B}_{\infty} : \{\chi : \|\chi\|_{2^{\epsilon}}\}$

Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$

By symmetry, all but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume falls within ϵ of any equator! $S = \{x \in \mathcal{B}_d : |\langle x, t \rangle| \le \epsilon\}$

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.

How is this possible?

BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.

How is this possible? High-dimensional space looks nothing like this picture!

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$.

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$.

Proof Sketch:

• Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$.

- Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$.

- Let x have independent Gaussia (N(0, 1)) entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \leq 2^{\Theta(-\epsilon^2 d)}$. Why? $\bar{x}(1) = \frac{1}{\|\bar{x}\|_2}$. What is $\mathbb{E}[\|x\|_2^2]$?

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$.

- Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?

•
$$\bar{x}(1) = \frac{x(1)}{\|x\|_2}$$
. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = \underline{d}$.

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$.

- Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \le d/2] \le 2^{-\Theta(d)}$

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$.

- Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \le d/2] \le 2^{-\Theta(d)}$
- · Conditioning on $||x||_2^2 \ge d/2$, since x(1) is normally distributed,

$$\Pr[|\bar{x}(1)| > \epsilon] = \Pr[|\underline{x}(1)| > \underline{\epsilon \cdot ||x||_2}]$$

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$.

- Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \le \underline{d/2}] \le 2^{-\Theta(d)}$
- Conditioning on $||x||_2^2 \ge d/2$, since x(1) is normally distributed, $||x||_2 \ge d/2$

$$\Pr[|\bar{x}(1)| > \epsilon] = \Pr[|x(1)| > \epsilon \cdot ||x||_2]$$

$$\leq \Pr[|x(1)| > \epsilon \cdot \sqrt{d/2}]$$

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$

Proof Sketch:

- · Let \underline{x} have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\overline{x} = \frac{x}{\|x\|_2}$. \overline{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$ Why?

Suffices to show that
$$\Pr[\underline{x(1)}] > \epsilon] \le 2^{\delta t} \text{ only}$$

$$\overline{x}(1) = \underbrace{\frac{x(1)}{\|x\|_2^2}}. \quad \mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[\underline{x(i)}^2] = d. \quad \Pr[\|x\|_2^2 \le d/2] \le 2^{-\Theta(d)}$$

• Conditioning on $||x||_2^2 \ge d/2$, since x(1) is normally distributed, $||x||_2^2$ $\Pr[|\bar{x}(1)| > \epsilon] = \Pr[|x(1)| > \epsilon \cdot ||x||_2]$

Let C_d be the d-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \le 1 \ \forall i\}$.

Let C_d be the d-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \le 1 \ \forall i\}.$

In low-dimensions, the cube is not that different from the ball.

Let C_d be the d-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \le 1 \ \forall i\}.$

In low-dimensions, the cube is not that different from the ball.

But volume of $\underline{\mathcal{C}_d}$ is 2^d while volume of \mathcal{B}^d is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} = \frac{1}{d^{\Theta(d)}}$. A huge gap!

Let C_d be the d-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \le 1 \,\forall i\}$. In low-dimensions, the cube is not that different from the ball.

But volume of C_d is 2^d while volume of \mathcal{B}^d is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} = \frac{1}{d^{\Theta(d)}}$. A huge gap! So something is very different about these shapes...

Corners of cube are \sqrt{d} times further away from the origin than the surface of the ball.

Corners of cube are \sqrt{d} times further away from the origin than the surface of the ball.

Data generated from the ball \mathcal{B}_d will behave very differently than data generated from the cube C_d . $[\times(1) \times (1) \cdot \cdot \cdot \times (2)]$

•
$$x \sim \mathcal{B}_d$$
 has $||x||_2^2 \le 1$.

$$x \sim C_d$$
 has $\mathbb{E}[\|x\|_2^2] = ?$,

$$\mathbb{E}||x||_{2}^{2} = \mathbb{E}|x(i)|^{2} = \mathbb{E}|x(i)|^{2}$$

$$\frac{1}{2} = \sum_{i=1}^{d} Var(X_i)$$

$$-\frac{d}{3}$$

- $x \sim \mathcal{B}_d$ has $||x||_2^2 \le 1$.
- $x \sim C_d$ has $\mathbb{E}[\|x\|_2^2] = d/3$,

- $x \sim \mathcal{B}_d$ has $||x||_2^2 \leq 1$.
- $x \sim C_d$ has $\mathbb{E}[\|x\|_2^2] = d/3$, and $\Pr[\|x\|_2^2 \le d/6] \le 2^{-\Theta(d)}$.

- $x \sim \mathcal{B}_d$ has $||x||_2^2 \le 1$. • $x \sim \mathcal{C}_d$ has $\mathbb{E}[||x||_2^2] = d/3$, and $\Pr[||x||_2^2 \le d/6] \le 2^{-\Theta(d)}$.
- Almost all the volume of the unit cube falls far away from the origin i.e., far outside the unit ball.

TAKAWAYS

- · High-dimensional space behaves very differently from low-dimensional space.
- Random projection (i.e., the JL Lemma) reduces to a much lower-dimensional space that is still large enough to capture this behavior on a subset of *n* points.