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LOGISTICS

- Midterm will be next Thursday-Friday. See webpage for study
guide/practice questions.

- No quiz this upcoming week.
- I will hold extra office hours next Wednesday at 2pm.

- Pratheba has expanded her office hours to: Monday 2-3pm,
Wednesday 1-2pm, and Friday 1-2pm, starting this upcoming
week.



SUMMARY

Last Class: Finished Up Johnson-Lindenstrauss Lemma

- Completed the proof of the Distributional JL lemma.
- Discussed an application to k-means clustering.

- Started discussion of high-dimensional geometry.



SUMMARY

Last Class: Finished Up Johnson-Lindenstrauss Lemma

- Completed the proof of the Distributional JL lemma.
- Discussed an application to k-means clustering.

- Started discussion of high-dimensional geometry.
This Class: High-Dimensional Geometry

- Bizarre phemomena in high-dimensional space.

- Connections to JL lemma and random projection.



ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in
d-dimensional space? Answer: d.



ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in
d-dimensional space? Answer: d. <><\~3\/1 =0

What is the largest set of unit vectors in d-dimensional space
that have all pairwise dot products |(X, )| < €? (think e = .01)
. 50(e2d) -
Answer: 2 .
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ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in
d-dimensional space? Answer: d.

What is the largest set of unit vectors in d-dimensional space

that have all pairwise dot products |(X, )| < €? (think e = .01)
Answer; 20(c’d).

An exponentially large set of random vectors will be nearly

pairwise orthogonal with high probability! wion + )
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CURSE OF DIMENSIONALITY

Claim: In d-dimensional space, a set of 29(¢9 random unit
vectors have all pairwise dot products at most e (think e = .01)

ies: 11X — %12 = 11K112 = 1K 112 — 2%7%;
Implies: [[X — %13 = 15113 + %13 - 247 € [1.98,2.02].

Even with an exponential number of random vector samples,
we don't see any nearby vectors.

- One version of the 'curse of dimensionality’.

- If all your distances are roughly the same, distance based
methods (k-means clustering, nearest neighbors, SYMS, etc.)
aren’t going to work well.

—

-| Distances are only meaningful if we have lots of structure
and our data isn't just independent random vectors.



CURSE OF DIMENSIONALITY

Distances for MNIST Digits:
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Distances for Random Images:
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CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if
N < R™*9 is a random matrix (linear map) with m = 0 (log”>,

for X;,..., X, € R? with high probability, for all i, :

(- E)IIXIQ Xill3 < 10X, - K3 < (1+ e)lIX = X2
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CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if
N < R4 is a random matrix (linear map) with m = 0 (“1#)

for X;,..., X, € R? with high probability, for all i, : X
A

(1= I = %[5 < [INX; = AK[5 < (1+ )1 — %3 %
Implies: If Xi,...,X, are nearly orthogonal unit vectors in :\
d-dimensions (vvlth pairwise dot products bounded by ¢/8),
then III%IIz’ e \\I?YX;nllz are nearly orthogonal unit vectors in
m-dimensions (with pairwise dot products bounded by e).
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CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if
N < R4 is a random matrix (linear map) with m = 0 (log”>,

for X;,..., X, € R? with high probability, for all i, :

(1= )l = %[5 < [NX; - NX[3 < (1 + 1% — X2

Implies: If Xi,...,X, are nearly orthogonal unit vectors in

d-dimensions (with pairwise dot products bounded by ¢/8),
I'I)?q I'I)?n H H

then AR AT nearly orthogonal unit vectors in

m-dimensions (with pairwise dot products bounded by e).

- Algebrais a blt messy but a good exeruse{\’/t\o partially work

through. Q/
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CONNECTION TO DIMENSIONALITY REDUCTION

Claim 1: n nearly orthogonal unit vectors in any dimension d
can be projectedtom =0 (log”> dimensions and still be
nearly orthogonal.

Claim 2: In m dimensions, there can be roughly 2°9(€™) nearly
orthogonal unit vectors.
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Claim 1: n nearly orthogonal unit vectors in any dimension d
can be projectedtom =0 (log”> dimensions and still be
nearly orthogonal.

Claim 2: In m dimensions, there can be roughly 2°0(€™) nearly
orthogonal unit vectors.

- For both of these to hold it must be that n < 20(¢*m)_
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CONNECTION TO DIMENSIONALITY REDUCTION

Claim 1: n nearly orthogonal unit vectors in any dimension d
can be projectedtom =0 (log”> dimensions and still be
nearly orthogonal.

Claim 2: In m dimensions, there can be roughly 2°0(€™) nearly
orthogonal unit vectors.

- For both of these to hold it must be that n < 20(€m)
- le, n =2logn < p0(e?m) and som>0 (log”).
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CONNECTION TO DIMENSIONALITY REDUCTION

Claim 1: n nearly orthogonal unit vectors in any dimension d
can be projectedtom =0 (log”> dimensions and still be
nearly orthogonal.

Claim 2: In m dimensions, there can be roughly 2°0(€™) nearly
orthogonal unit vectors.

- For both of these to hold it must be that n < 20(€m)
- le, n =208 < 20(e?m) and so m > 0 (log”).

Tells us that the JL lemma is optimal up to constants.



CONNECTION TO DIMENSIONALITY REDUCTION

Claim 1: n nearly orthogonal unit vectors in any dimension d
can be projectedtom =0 (log”> dimensions and still be
nearly orthogonal.

Claim 2: In m dimensions, there can be roughly 2°0(€™) nearly
orthogonal unit vectors.

- For both of these to hold it must be that n < 20(em),
- le, n=2°" < 20(¢m and som > 0 (log”).
Tells us that the JL lemma is optimal up to constants.

- m is chosen just large enough so that the geometry of
d-dimensional space still holds on the n points in question
after projection to a much lower dimensional space.



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Let By be the unit ball in d dimensions. By = {x € R? : ||x||, < 1}.
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What percentage of the volume of By falls within e distance of its
surface?




BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Let By be the unit ball in d dimensions. By = {x € RY : ||x||; < 1}.

What percentage of the volume of By falls within e distance of its
surface?
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BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Let By be the unit ball in d dimensions. By = {x € R? : ||x||, < 1}.

What percentage of the volume of By falls within e distance of its
surface? Answer: all but a (1 — €)? < e fraction. Exponentially

small in the d|men5|oi1 of = |
ol ( %a> @T g0, B

4o (207 T ; " ¢> o e "o e
4 | ~ QPO o0

- @a

—_—

d
Volume of a radius R ball is ¢f7; - RY.



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

All but an e~< fraction of a unit ball's volume is within e of its
surface.



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

All but an e~ fraction of a unit ball's volume is within e of its
surface. If we randomly sample points with ||x||, < 1, nearly all will
have ||x]. > 1—e



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

All but an e~ fraction of a unit ball's volume is within e of its
surface. If we randomly sample points with ||x||, < 1, nearly all will
have ||x|l, > 1—e.

- Isoperimetric inequality: the ball has the minimum surface
area/volume ratio of any shape.
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All but an e~ fraction of a unit ball's volume is within e of its
surface. If we randomly sample points with ||x||, < 1, nearly all will
have ||x|l, > 1—e.

- Isoperimetric inequality: the ball has the minimum surface
area/volume ratio of any shape.
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+ If we randomly sample points from any high-dimensional shape,
nearly all will fall near its surface.



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

All but an e—<? fraction of a unit ball's volume is within e of its |
surface. If we randomly sample points with ||x]], < 1, nearly all will
have ||x|l, > 1—e.

- Isoperimetric inequality: the ball has the minimum surface
area/volume ratio of any shape.

oog

+ If we randomly sample points from any high-dimensional shape,
nearly all will fall near its surface.

"All points are outliers! 9



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

What fraction of the cubes are visible on the surface of the
cube?

a) 80% b) 50%c) 25% d) 10%
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BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

What fraction of the cubes are visible on the surface of the
cube?

a) 80% b) 50%c) 25% d) 10%
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10° — 8% 1000 — 512
10 1000

= .488.



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

What percentage of the volume of By falls within e distance of its

- 13
equator? E_ 2
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Formally: volume of set S = {x € By : |x(1)| < €}.



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

What percentage of the volume of By falls within e distance of its

equator? Answer: all but a 2&(~=<'d) fraction. <7 .0 Q]_:’BOD
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Formally: volume of set S = {x € By : |x(1)| < €}.



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

What percentage of the volume of By falls within e distance of its

equator? Answer: all but a 28(=<'d) fraction. ) . ¢ S
B.= x| X[, |

Formally: volume of set S = {x € By : |x(1)| < €}.

By symmetry, all but a 29(—<'d) fraction of the volume falls within ¢ of
any equator! S={x € By : [{(x,t)| < €}



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

P

Claim 1: All but a 29(=<'9) fraction of the volume of a ball falls within
e of any equator.

Claim 2: All but a 28(=<9) fraction falls within € of its surface.
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BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Claim 1: All but a 29(=<'9) fraction of the volume of a ball falls within
e of any equator.

Claim 2: All but a 28(=<9) fraction falls within € of its surface.

How is this possible?



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Claim 1: All but a 29(=<'9) fraction of the volume of a ball falls within
e of any equator.

Claim 2: All but a 28(=<9) fraction falls within € of its surface.

How is this possible? High-dimensional space looks nothing like this
picture! 12



CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a 29(=<’d fraction of the volume of a ball falls within e
of its equator. l.e, in S = {x € By : |x(1)| < €}.
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CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a 29(=<’d fraction of the volume of a ball falls within e
of its equator. l.e, in S = {x € By : |x(1)| < €}.

Proof Sketch:

- Let x have independent Gaussian A/(0, 1) entries and let X = |XX”2. X

is selected uniformly at random from the surface of the ball.




CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a 29(=<’d fraction of the volume of a ball falls within e
of its equator. l.e, in S = {x € By : |x(1)| < €}.

Proof Sketch:

- Let x have independent Gaussian A/(0, 1) entries and let X = |XX”2. X

is selected uniformly at random from the surface of the ball.

- Suffices to show thatPr[[X(1)| > ¢] < 29D why?
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CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a 29(=<’d fraction of the volume of a ball falls within e
of its equator. l.e, in S = {x € By : |x(1)| < €}.

Proof Sketch:

- Let x have independent Gaussiaé N(O,?) entries and letx = |XX”2. X

is selected uniformly at random from the surface of the ball.

- Suffices to show that Pr|x(1)| > ¢] < 29(-€D. wWhy? ‘
" [|,( ) Lx s edom st
- %(1) =" what is E[|Ix]3]? B
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CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a 29(=<’d fraction of the volume of a ball falls within e
of its equator. le, in S={x € By : [x(1)] < €}.

Proof Sketch:

- Let x have independent Gaussian A/(0, 1) entries and let X = Hxxllz' X
is selected uniformly at random from the surface of the ball.

- Suffices to show that Pr[[X(1)| > ¢] < 29D why?
CX() = it ElXI3 = S E()] .
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CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a 29(=<’d fraction of the volume of a ball falls within e
of its equator. le, in S={x € By : [x(1)] < €}.

Proof Sketch:

- Let x have independent Gaussian A/(0, 1) entries and let X = Hxxllz' X
is selected uniformly at random from the surface of the ball.

- Suffices to show that Pr[[X(1)| > ¢] < 29D why?
R(1) = 74 ElWZ) = S E)] = d. Prljx|? < d/2] < 2%
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CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a 29(=<’d fraction of the volume of a ball falls within e
of its equator. le, in S={x € By : [x(1)] < €}.

Proof Sketch:

- Let x have independent Gaussian N(0, 1) entries and let X = L X
is selected uniformly at random from the surface of the ball.

- Suffices to show that Pr[[X(1)| > ¢] < 29D why?

(1) = fi- I8l = S EGY] = d. Pri: < d/2) < 2790

- Conditioning on ||| > d/2, since x(1) is normally distributed,

PrX()[ > € = Pr{ix()] > € [Ix]l2]
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CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a 29(=<’d fraction of the volume of a ball falls within e
of its equator. le, in S={x € By : [x(1)] < €}.

Proof Sketch:

- Let x have independent Gaussian A/(0, 1) entries and let X = \XX||2- X
is selected uniformly at random from the surface of the ball.

- Suffices to show that Pr[[X(1)| > ¢] < 29D why?
- x(1) = O[3 = L ElX()2) = d. Pri); < d/2) < 2 O

- Conditioning on ||x||3 > d/2, since x(1) is normally distributed,
\\ 7\\\'\7 \dL

PrX()[ > € = Pr{ix()[ > e [Ix]l2]

< PAX()| > ¢ \/d/2)



CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a 29(=<’d) fraction of the volume of a ball falls within e
of its equator. le, in S={x € By : [x(1)] < €}.
\_’-‘

Proof Sketch: /L /Lf/\g\_)

- Letx have independent Gaussian N(0, 1) entries and let

X
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HIGH-DIMENSIONAL CUBES

Let Cy be the d-dimensional cube: Cy = {x € RY : [x(i)] <1V i}.
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HIGH-DIMENSIONAL CUBES

Let Cy be the d-dimensional cube: Cy = {x € RY : [x(i)] <1V i}.

In low-dimensions, the cube is not that different from the ball.
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HIGH-DIMENSIONAL CUBES

Let Cy be the d-dimensional cube: Cy = {x € RY : [x(i)] <1V i}.

In low-dimensions, the cube is not that different from the ball.

m

d
But volume of C, is 2¢ while volume of B% is =2 = A
—_—
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HIGH-DIMENSIONAL CUBES

Let Cy be the d-dimensional cube: Cy = {x € RY : [x(i)] <1V i}.

In low-dimensions, the cube is not that different from the ball.

d
But volume of Cy is 2¢ while volume of BY is 7oy = gom- A

huge gap! So something is very different about these shapes...
14



HIGH-DIMENSIONAL CUBES

2 dimensions




HIGH-DIMENSIONAL CUBES

3
2 dimensions (r
A

Corners of cube are v/d times further away from the origin
than the surface of the ball.



HIGH-DIMENSIONAL CUBES

high dimensions

Corners of cube are v/d times further away from the origin
than the surface of the ball.



HIGH-DIMENSIONAL CUBES

Data generated from the ball By will behave very differently than
data generated from the cube Cy.
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HIGH-DIMENSIONAL CUBES

Data generated from the ball By will behave very differently than

data generated from the cube C,.

: ’ [x) <y - .- X(J,S}
© X~ By has [|x[|3 < 1. )
X~ Cd haS E[HXH%] = ?' \,n\II;(M endnag
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HIGH-DIMENSIONAL CUBES

Data generated from the ball By will behave very differently than
data generated from the cube Cy.

* X ~ By has [|x]|? < 1.

x~CohasENE =3 Fxl, =N
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HIGH-DIMENSIONAL CUBES

Data generated from the ball By will behave very differently than
data generated from the cube Cy.

* X ~ By has [|x]|? < 1.
© X ~ Cq has E[||x||3] = d/3, and Pr[||x|3 < d/6] < 2°),
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HIGH-DIMENSIONAL CUBES

Data generated from the ball By will behave very differently than

data generated from the cube Cy.

© X ~ By has ||x|3 < 1. l-;fé
© X ~ Cq has E[||x||3] = d/3, and Pr[||x|3 < d/6] < 2°),

- Almost all the volume of the unit cube falls far awaﬁrom the
origin - i.e., far outside the unit ball.

2 dimensions high dimensions
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TAKAWAYS

- High-dimensional space behaves ver dfferently from
low-dimensional space.

- Random projection (i.e,, the JL Lemma) reduces to a much
lower-dimensional space that is still large enough to capture
this behavior on a subset of n points.

- Need to be careful when using low-dimensional intuition for
high-dimensional vectors. RIS SN

1 Need to be careful when modeling data ad random vectors NE i\lj"
in high-dimensions. ( +,I’~ ‘Lle Vlj S
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