COMPSCI 514: ALGORITHMS FOR DATA SCIENCE Cameron Musco University of Massachusetts Amherst. Fall 2020. Lecture 12 ## LOGISTICS - Midterm will be next Thursday-Friday. See webpage for study guide/practice questions. - · No quiz this upcoming week. - · I will hold extra office hours next Wednesday at 2pm. - Pratheba has expanded her office hours to: Monday 2-3pm, Wednesday 1-2pm, and Friday 1-2pm, starting this upcoming week. #### **SUMMARY** # Last Class: Finished Up Johnson-Lindenstrauss Lemma - · Completed the proof of the Distributional JL lemma. - Discussed an application to k-means clustering. - · Started discussion of high-dimensional geometry. # Last Class: Finished Up Johnson-Lindenstrauss Lemma - · Completed the proof of the Distributional JL lemma. - Discussed an application to k-means clustering. - · Started discussion of high-dimensional geometry. # This Class: High-Dimensional Geometry - · Bizarre phemomena in high-dimensional space. - · Connections to JL lemma and random projection. # **ORTHOGONAL VECTORS** What is the largest set of mutually orthogonal unit vectors in *d*-dimensional space? Answer: *d*. ## ORTHOGONAL VECTORS What is the largest set of mutually orthogonal unit vectors in d-dimensional space? Answer: d. $\langle x, y \rangle = 0$ What is the largest set of unit vectors in *d*-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$? (think $\epsilon = .01$) ## **ORTHOGONAL VECTORS** What is the largest set of mutually orthogonal unit vectors in *d*-dimensional space? Answer: *d*. What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$? (think $\epsilon = .01$) Answer: $2^{\Theta(\epsilon^2 d)}$. An exponentially large set of random vectors will be nearly pairwise orthogonal with high probability! poug ## **CURSE OF DIMENSIONALITY** Claim: In d-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$) Implies: $$\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T\vec{x}_j \in [\underline{1.98}, 2.02].$$ Even with an exponential number of random vector samples, we don't see any nearby vectors. - · One version of the 'curse of dimensionality'. - If all your distances are roughly the same, distance based methods (*k*-means clustering, nearest neighbors, SVMS, etc.) aren't going to work well. - Distances are only meaningful if we have lots of structure and our data isn't just independent random vectors. # **CURSE OF DIMENSIONALITY** # Distances for Random Images: **Recall:** The Johnson Lindenstrauss lemma states that if $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j: **Recall:** The Johnson Lindenstrauss lemma states that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j: $$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2 \le \|\mathbf{\Pi}\vec{x}_i - \mathbf{\Pi}\vec{x}_j\|_2^2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2.$$ **Implies:** If $\vec{x}_1, \ldots, \vec{x}_n$ are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon/8$), then $\frac{\Pi \vec{x}_1}{\|\Pi \vec{x}_1\|_2}, \ldots, \frac{\Pi \vec{x}_n}{\|\Pi \vec{x}_n\|_2}$ are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ). **Recall:** The Johnson Lindenstrauss lemma states that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j: $$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2 \le \|\mathbf{\Pi}\vec{x}_i - \mathbf{\Pi}\vec{x}_j\|_2^2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2.$$ Implies: If $\vec{x}_1, \ldots, \vec{x}_n$ are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon/8$), then $\frac{\Pi \vec{x}_1}{\|\Pi \vec{x}_1\|_2}, \ldots, \frac{\Pi \vec{x}_n}{\|\Pi \vec{x}_n\|_2}$ are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ). · Algebra is a bit messy but a good exercise to partially work through. orthogral; **Claim 1:** n nearly orthogonal unit vectors in any dimension d can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal. Claim 1: <u>n</u> nearly orthogonal unit vectors in any dimension d can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal. Claim 2: In m dimensions, there can be roughly $2^{O(\epsilon^2 m)}$ nearly orthogonal unit vectors. • For both of these to hold it must be that $n \le 2^{O(\epsilon^2 m)}$. **Claim 1:** n nearly orthogonal unit vectors in any dimension d can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal. - For both of these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$. - I.e., $n = 2^{\log n} \le 2^{O(\epsilon^2 m)}$ and so $m \ge O\left(\frac{\log n}{\epsilon^2}\right)$. **Claim 1:** n nearly orthogonal unit vectors in any dimension d can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal. - For both of these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$. - · I.e., $n = 2^{\log n} \le 2^{O(\epsilon^2 m)}$ and so $m \ge O\left(\frac{\log n}{\epsilon^2}\right)$. - \cdot Tells us that the JL lemma is optimal up to constants. **Claim 1:** n nearly orthogonal unit vectors in any dimension d can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal. - For both of these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$. - · I.e., $n = 2^{\log n} \le 2^{O(\epsilon^2 m)}$ and so $m \ge O\left(\frac{\log n}{\epsilon^2}\right)$. - · Tells us that the JL lemma is optimal up to constants. - *m* is chosen just large enough so that the geometry of *d*-dimensional space still holds on the *n* points in question after projection to a much lower dimensional space. Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$. Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$. What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface? Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$. What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface? Volume of a radius R ball is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} \cdot R^{d}$. Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$. What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface? Answer: all but a $(1-\epsilon)^d \leq e^{-\epsilon d}$ fraction. Exponentially Volume of a radius R ball is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} \cdot R^d$. All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \le 1$, nearly all will have $\|x\|_2 \ge 1 - \epsilon$. All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \le 1$, nearly all will have $\|x\|_2 \ge 1 - \epsilon$. • Isoperimetric inequality: the ball has the minimum surface area/volume ratio of any shape. All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \le 1$, nearly all will have $\|x\|_2 \ge 1 - \epsilon$. • Isoperimetric inequality: the ball has the minimum surface area/volume ratio of any shape. • If we randomly sample points from any high-dimensional shape, nearly all will fall near its surface. All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $||x||_2 \le 1$, nearly all will have $||x||_2 \ge 1 - \epsilon$. • Isoperimetric inequality: the ball has the minimum surface area/volume ratio of any shape. · All points are outliers. What fraction of the cubes are visible on the surface of the cube? a) 80% b) 50% c) 25% d) 10% What fraction of the cubes are visible on the surface of the cube? a) 80% b) 50% c) 25% d) 10% $$\frac{10^3 - 8^3}{10^3} = \frac{1000 - 512}{1000} = .488.$$ What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator? ξ Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$ What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$ What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator? Answer: all but a $2^{\Theta(-\epsilon^2 d)}$ fraction. $\mathcal{B}_{\infty} : \{\chi : \|\chi\|_{2^{\epsilon}}\}$ Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$ By symmetry, all but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume falls within ϵ of any equator! $S = \{x \in \mathcal{B}_d : |\langle x, t \rangle| \le \epsilon\}$ Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator. Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator. Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator. Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator. Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator. **Claim 2:** All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface. How is this possible? ### **BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS** Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator. **Claim 2:** All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface. How is this possible? High-dimensional space looks nothing like this picture! **Claim:** All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$. Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$. ### Proof Sketch: • Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball. Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$. - Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball. - Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why? Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$. - Let x have independent Gaussia (N(0, 1)) entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball. - Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \leq 2^{\Theta(-\epsilon^2 d)}$. Why? $\bar{x}(1) = \frac{1}{\|\bar{x}\|_2}$. What is $\mathbb{E}[\|x\|_2^2]$? Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$. - Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball. - Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why? • $$\bar{x}(1) = \frac{x(1)}{\|x\|_2}$$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = \underline{d}$. Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$. - Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball. - Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why? - $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \le d/2] \le 2^{-\Theta(d)}$ Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$. - Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball. - Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why? - $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \le d/2] \le 2^{-\Theta(d)}$ - · Conditioning on $||x||_2^2 \ge d/2$, since x(1) is normally distributed, $$\Pr[|\bar{x}(1)| > \epsilon] = \Pr[|\underline{x}(1)| > \underline{\epsilon \cdot ||x||_2}]$$ Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$. - Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball. - Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why? - $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \le \underline{d/2}] \le 2^{-\Theta(d)}$ - Conditioning on $||x||_2^2 \ge d/2$, since x(1) is normally distributed, $||x||_2 \ge d/2$ $$\Pr[|\bar{x}(1)| > \epsilon] = \Pr[|x(1)| > \epsilon \cdot ||x||_2]$$ $$\leq \Pr[|x(1)| > \epsilon \cdot \sqrt{d/2}]$$ Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$ ## Proof Sketch: - · Let \underline{x} have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\overline{x} = \frac{x}{\|x\|_2}$. \overline{x} is selected uniformly at random from the surface of the ball. - Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$ Why? Suffices to show that $$\Pr[\underline{x(1)}] > \epsilon] \le 2^{\delta t} \text{ only}$$ $$\overline{x}(1) = \underbrace{\frac{x(1)}{\|x\|_2^2}}. \quad \mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[\underline{x(i)}^2] = d. \quad \Pr[\|x\|_2^2 \le d/2] \le 2^{-\Theta(d)}$$ • Conditioning on $||x||_2^2 \ge d/2$, since x(1) is normally distributed, $||x||_2^2$ $\Pr[|\bar{x}(1)| > \epsilon] = \Pr[|x(1)| > \epsilon \cdot ||x||_2]$ Let C_d be the d-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \le 1 \ \forall i\}$. Let C_d be the d-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \le 1 \ \forall i\}.$ In low-dimensions, the cube is not that different from the ball. Let C_d be the d-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \le 1 \ \forall i\}.$ In low-dimensions, the cube is not that different from the ball. But volume of $\underline{\mathcal{C}_d}$ is 2^d while volume of \mathcal{B}^d is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} = \frac{1}{d^{\Theta(d)}}$. A huge gap! Let C_d be the d-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \le 1 \,\forall i\}$. In low-dimensions, the cube is not that different from the ball. But volume of C_d is 2^d while volume of \mathcal{B}^d is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} = \frac{1}{d^{\Theta(d)}}$. A huge gap! So something is very different about these shapes... Corners of cube are \sqrt{d} times further away from the origin than the surface of the ball. Corners of cube are \sqrt{d} times further away from the origin than the surface of the ball. Data generated from the ball \mathcal{B}_d will behave very differently than data generated from the cube C_d . $[\times(1) \times (1) \cdot \cdot \cdot \times (2)]$ • $$x \sim \mathcal{B}_d$$ has $||x||_2^2 \le 1$. $$x \sim C_d$$ has $\mathbb{E}[\|x\|_2^2] = ?$, $$\mathbb{E}||x||_{2}^{2} = \mathbb{E}|x(i)|^{2} = \mathbb{E}|x(i)|^{2}$$ $$\frac{1}{2} = \sum_{i=1}^{d} Var(X_i)$$ $$-\frac{d}{3}$$ - $x \sim \mathcal{B}_d$ has $||x||_2^2 \le 1$. - $x \sim C_d$ has $\mathbb{E}[\|x\|_2^2] = d/3$, - $x \sim \mathcal{B}_d$ has $||x||_2^2 \leq 1$. - $x \sim C_d$ has $\mathbb{E}[\|x\|_2^2] = d/3$, and $\Pr[\|x\|_2^2 \le d/6] \le 2^{-\Theta(d)}$. - $x \sim \mathcal{B}_d$ has $||x||_2^2 \le 1$. • $x \sim \mathcal{C}_d$ has $\mathbb{E}[||x||_2^2] = d/3$, and $\Pr[||x||_2^2 \le d/6] \le 2^{-\Theta(d)}$. - Almost all the volume of the unit cube falls far away from the origin i.e., far outside the unit ball. ## **TAKAWAYS** - · High-dimensional space behaves very differently from low-dimensional space. - Random projection (i.e., the JL Lemma) reduces to a much lower-dimensional space that is still large enough to capture this behavior on a subset of *n* points.