

COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.

Lecture 11

LOGISTICS

· Problem Set 2 was due yesterday.

- · Quiz 5 is due today at 8pm.
- The exam will be held next Thursday-Friday. Let me know ASAP if you need accommodations (e.g., extended time).
- My office hours this week and next will focus on exam review and going through practice questions.

SUMMARY

Last Class: The Johnson-Lindenstrauss Lemma

- Low-distortion embeddings for any set of points via random projection.
- Started on proof of the JL Lemma via the Distributional JL Lemma.

Last Class: The Johnson-Lindenstrauss Lemma

- Low-distortion embeddings for any set of points via random projection.
- Started on proof of the JL Lemma via the Distributional JL Lemma.

This Class:

- · Finish Up proof of the JL lemma.
- · Example applications to classification and clustering.
- · Discuss connections to high dimensional geometry.

THE JOHNSON-LINDENSTRAUSS LEMMA

Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $\Pi : \mathbb{R}^d \to R^m$ such that $m = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = \Pi \vec{x}_i$:

For all
$$i, j$$
: $(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$.

Further, if $\Pi \in \mathbb{R}^{m \times d}$ has each entry chosen i.i.d. from $\mathcal{N}(0,1/m)$ and $m = O\left(\frac{\log n/\delta}{\epsilon^2}\right)$, Π satisfies the guarantee with probability $\geq 1 - \delta$.

THE JOHNSON-LINDENSTRAUSS LEMMA

Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $\mathbf{\Pi} : \mathbb{R}^d \to R^m$ such that $m = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = \mathbf{\Pi} \vec{x}_i$:

For all
$$i, j : (1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$$
.

Further, if $\Pi \in \mathbb{R}^{m \times d}$ has each entry chosen i.i.d. from $\mathcal{N}(0,1/m)$ and $m = O\left(\frac{\log n/\delta}{\epsilon^2}\right)$, Π satisfies the guarantee with probability $\geq 1 - \delta$.

DISTRIBUTIONAL JL

We showed that the Johnson-Lindenstrauss Lemma follows from:

Distributional JL Lemma: Let $\underline{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$ \mathbb{Q} $(1 - \epsilon) \|\vec{y}\|_2 \leq \|\underline{\Pi}\vec{y}\|_2 \leq (1 + \epsilon) \|\vec{y}\|_2$.

DISTRIBUTIONAL JL

We showed that the Johnson-Lindenstrauss Lemma follows from:

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$ $(1 - \epsilon) \|\vec{y}\|_2 \leq \|\Pi\vec{y}\|_2 \leq (1 + \epsilon) \|\vec{y}\|_2.$

Main Idea: Union bound over $\binom{n}{2}$ difference vectors $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{V} \in \mathbb{R}^d$, with probability $> 1 - \delta$

$$(1 - \epsilon) \|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1 + \epsilon) \|\vec{y}\|_2.$$

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$ $(1 - \epsilon) \|\vec{y}\|_2 \leq \|\Pi\vec{y}\|_2 \leq (1 + \epsilon) \|\vec{y}\|_2.$

· Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1 - \epsilon) \|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1 + \epsilon) \|\vec{y}\|_2.$$

- · Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\underline{\tilde{y}}(j) = \langle \Pi(j), \vec{y} \rangle$

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1 - \epsilon) \|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1 + \epsilon) \|\vec{y}\|_2.$$

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1 - \epsilon) \|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1 + \epsilon) \|\vec{y}\|_2.$$

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \underline{\mathbf{\Pi}(j)}, \vec{\mathbf{y}} \rangle = \sum_{i=1}^d \mathbf{g}_i \cdot \vec{\mathbf{y}}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(\underline{0}, \underline{1/m})$.

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1 - \epsilon) \|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1 + \epsilon) \|\vec{y}\|_2.$$

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^d \mathbf{g}_i \cdot \vec{\mathbf{y}}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- · For any j, $\underline{\tilde{y}(j)} = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \underline{g_i} \cdot \underline{\vec{y}}(i)$ where $\underline{g}_i \sim \mathcal{N}(0, 1)$.
- $g_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2)$: a normal distribution with variance $\vec{y}(i)^2$.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2)$: a normal distribution with variance $\vec{y}(i)^2$.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2)$: a normal distribution with variance $\vec{y}(i)^2$.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2)$: a normal distribution with variance $\vec{y}(i)^2$.

What is the distribution of $\tilde{y}(j)$?

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2)$: a normal distribution with variance $\vec{y}(i)^2$.

What is the distribution of $\tilde{y}(j)$? Also Gaussian!

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{a} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}(0, \vec{\mathbf{y}}(i)^2).$$

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{a} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}(0, \vec{\mathbf{y}}(i)^2).$$

Stability of Gaussian Random Variables. For independent
$$a \sim \mathcal{N}(\mu_1, \sigma_1^2)$$
 and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:
$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$
linear exaction

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{a} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}(0, \vec{\mathbf{y}}(i)^2).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_{i} \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}(0, \vec{\mathbf{y}}(i)^{2}).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a+b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus,
$$\tilde{\mathbf{y}}(j) \sim \frac{1}{\sqrt{m}} \mathcal{N}(0, \vec{y}(1)^2 + \vec{y}(2)^2 + \dots + \vec{y}(d)^2)$$
 $\tilde{\mathbf{y}}(j) \sim \frac{1}{\sqrt{m}} \mathcal{N}(\mathcal{D}_l || \mathbf{y} ||_{\lambda}^{\lambda})$

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{u} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}(0, \vec{\mathbf{y}}(i)^2).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus,
$$\tilde{\mathbf{y}}(j) \sim \frac{1}{\sqrt{m}} \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2)$$

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{u} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}(0, \vec{\mathbf{y}}(i)^2).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, ||\vec{y}||_2^2/m)$.

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{y} = \Pi \vec{y}$$
, we have $\tilde{y}(j) = \langle \Pi(j), \vec{y} \rangle$ and:
$$\tilde{y}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i) \text{ where } \mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2).$$

Stability of Gaussian Random Variables. For independent $a \sim$ $\mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m)$. I.e., $\tilde{\mathbf{y}}$ itself is a random Gaussian vector. Rotational invariance of the Gaussian distribution.

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
$$\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^d \mathbf{g}_i \cdot \vec{y}(i) \text{ where } \mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2).$$

Stability of Gaussian Random Variables. For independent
$$a \sim \mathcal{N}(\mu_1, \sigma_1^2)$$
 and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:
$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m)$. I.e., $\tilde{\mathbf{y}}$ itself is a random Gaussian vector. Rotational invariance of the Gaussian distribution.

Stability is another explanation for the central limit theorem.

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$,

for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is
$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}]$$
? = $\|\mathbf{y}\|_{2}^{2}$?

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E}\left[\sum_{j=1}^m \tilde{\mathbf{y}}(j)^2\right]$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E}\left[\sum_{j=1}^m \tilde{\mathbf{y}}(j)^2\right] = \sum_{j=1}^m \mathbb{E}[\tilde{\mathbf{y}}(j)^2]$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$: $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$ What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$? $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E}\left[\sum_{j=1}^m \tilde{\mathbf{y}}(j)^2\right] = \sum_{j=1}^m \mathbb{E}[\tilde{\mathbf{y}}(j)^2]$ $= \sum_{j=1}^m \mathbb{E}[\tilde{\mathbf{y}}(j)^2]$ $= \sum_{j=1}^m \mathbb{E}[\tilde{\mathbf{y}}(j)^2]$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$
$$= \sum_{j=1}^{m} \frac{\|\vec{y}\|_{2}^{2}}{m}$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\begin{split} \tilde{\mathbf{y}}(j) &\sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m). \\ \text{What is } \mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]? & \cong \mathbb{I}(\mathbf{y})\mathbb{I}_{\mathbf{z}}^{\infty} \\ \mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] &= \mathbb{E}\left[\sum_{j=1}^m \tilde{\mathbf{y}}(j)^2\right] \\ &= \sum_{i=1}^m \frac{\|\vec{\mathbf{y}}\|_2^2}{m} = \|\vec{\mathbf{y}}\|_2^2 \end{split}$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$
$$= \sum_{j=1}^{m} \frac{\|\vec{\mathbf{y}}\|_{2}^{2}}{m} = \|\vec{\mathbf{y}}\|_{2}^{2}$$

So $\tilde{\mathbf{y}}$ has the right norm in expectation.

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$
$$= \sum_{j=1}^{m} \frac{\|\vec{\mathbf{y}}\|_{2}^{2}}{m} = \|\vec{\mathbf{y}}\|_{2}^{2}$$

So $\tilde{\mathbf{y}}$ has the right norm in expectation.

How is $\|\tilde{\mathbf{y}}\|_2^2$ distributed? Does it concentrate?

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_i : normally distributed random variable

So Far: Each entry of our compressed vector $\tilde{\mathbf{y}}$ is Gaussian with :

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{\mathbf{y}}\|_2^2$

So Far: Each entry of our compressed vector $\tilde{\mathbf{y}}$ is Gaussian with :

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m) \text{ and } \mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{\mathbf{y}}\|_2^2$$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(i)^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

So Far: Each entry of our compressed vector $\tilde{\mathbf{y}}$ is Gaussian with :

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{y}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

So Far: Each entry of our compressed vector $\tilde{\mathbf{y}}$ is Gaussian with :

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{\mathbf{y}}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(i)^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting **Z** be a Chi-Squared random variable with m degrees of freedom, $\mathcal{E} \supset \mathcal{O}$

$$\Pr[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}] \le 2e^{-m\epsilon^2/8}.$$

So Far: Each entry of our compressed vector $\tilde{\mathbf{y}}$ is Gaussian with $\tilde{\mathbf{y}}$ $\tilde{$

Lemma: (Chi-Squared Concentration) Letting **Z** be a Chi-Squared random variable with *m* degrees of freedom, $7 = ||\hat{y}||_{2}$ $||\mathbf{Z} - \mathbf{E}\mathbf{Z}| \ge \epsilon \mathbf{E}\mathbf{Z}| \le 2e^{-m\epsilon^2/8}.$

If we set
$$\underline{m} = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$$
, with probability $1 - O(e^{-\log(1/\delta)}) \ge 1 - \delta$:
$$(1 - \epsilon) \|\vec{y}\|_2^2 \le \|\tilde{\mathbf{y}}\|_2^2 \le (1 + \epsilon) \|\vec{y}\|_2^2.$$

So Far: Each entry of our compressed vector $\tilde{\mathbf{y}}$ is Gaussian with :

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{\mathbf{y}}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting ${\bf Z}$ be a Chi-Squared random variable with ${\it m}$ degrees of freedom,

$$\Pr[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}] \le 2e^{-m\epsilon^2/8}.$$

If we set
$$m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$$
, with probability $1 - O(e^{-\log(1/\delta)}) \ge 1 - \delta$:
$$(1 - \epsilon)\|\vec{y}\|_2^2 \le \|\tilde{\mathbf{y}}\|_2^2 \le (1 + \epsilon)\|\vec{y}\|_2^2.$$

Gives the distributional JL Lemma and thus the classic JL Lemma!

Goal: Separate n points in d dimensional space into k groups.

Goal: Separate *n* points in *d* dimensional space into *k* groups.

k-means Objective:
$$Cost(C_1, ..., C_k) = \min_{C_1, ..., C_k} \sum_{j=1}^k \sum_{\vec{x} \in C_k} ||\vec{x} - \mu_j||_2^2$$
.

Goal: Separate *n* points in *d* dimensional space into *k* groups.

k-means Objective:
$$Cost(C_1, ..., C_k) = \min_{C_1, ..., C_k} \sum_{j=1}^{n} \sum_{\vec{x} \in C_k} ||\vec{x} - \mu_j||_2^2$$
.

Write in terms of distances:

$$Cost(C_1, ..., C_k) = \min_{C_1, ..., C_k} \sum_{i=1}^{R} \sum_{\vec{x}_1, \vec{x}_2 \in C_k} ||\vec{x}_1 - \vec{x}_2||_2^2$$

k-means Objective:
$$Cost(C_1, \dots, C_k) = \min_{C_1, \dots, C_k} \sum_{i=1}^k \sum_{\vec{X}_1, \vec{X}_2 \in C_k} ||\vec{X}_1 - \vec{X}_2||_2^2$$

k-means Objective:
$$Cost(\mathcal{C}_1, \dots, \mathcal{C}_k) = \min_{\mathcal{C}_1, \dots, \mathcal{C}_k} \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in \mathcal{C}_k} \|\vec{x}_1 - \vec{x}_2\|_2^2$$
 If we randomly project to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, for all pairs \vec{x}_1, \vec{x}_2 ,
$$(1 - \epsilon)\|\vec{x}_1 - \vec{x}_2\|_2^2 \leq \|\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2\|_2^2 \leq (1 + \epsilon)\|\vec{x}_1 - \vec{x}_2\|_2^2$$

k-means Objective:
$$Cost(\mathcal{C}_1,\ldots,\mathcal{C}_k) = \min_{\mathcal{C}_1,\ldots\mathcal{C}_k} \sum_{j=1}^{\kappa} \sum_{\vec{x}_1,\vec{x}_2 \in \mathcal{C}_k} \|\vec{x}_1 - \vec{x}_2\|_2^2$$
 If we randomly project to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, for all pairs \vec{x}_1,\vec{x}_2 ,
$$(1-\epsilon)\|\vec{x}_1 - \vec{x}_2\|_2^2 \leq \|\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2\|_2^2 \leq (1+\epsilon)\|\vec{x}_1 - \vec{x}_2\|_2^2 \Longrightarrow$$
 Letting $\overline{Cost}(\mathcal{C}_1,\ldots,\mathcal{C}_k) = \min_{\underline{\mathcal{C}}_1,\ldots,\mathcal{C}_k} \sum_{j=1}^{k} \sum_{\tilde{\mathbf{x}}_1,\tilde{\mathbf{x}}_2 \in \mathcal{C}_k} \|\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2\|_2^2$
$$(1-\epsilon)Cost(\mathcal{C}_1,\ldots,\mathcal{C}_k) \leq \overline{Cost}(\mathcal{C}_1,\ldots,\mathcal{C}_k) \leq (1+\epsilon)Cost(\mathcal{C}_1,\ldots,\mathcal{C}_k).$$

k-means Objective:
$$Cost(C_1, ..., C_k) = \min_{C_1, ..., C_k} \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in C_k} ||\vec{x}_1 - \vec{x}_2||_2^2$$
 If we randomly project to $m = O(\frac{\log n}{\epsilon^2})$ dimensions, for all pairs \vec{x}_1, \vec{x}_2 ,

$$(1 - \epsilon) \|\vec{x}_1 - \vec{x}_2\|_2^2 \le \|\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2\|_2^2 \le (1 + \epsilon) \|\vec{x}_1 - \vec{x}_2\|_2^2 \implies$$

Letting
$$\overline{Cost}(C_1, \dots, C_k) = \min_{C_1, \dots C_k} \sum_{j=1}^k \sum_{\tilde{\mathbf{x}}_1, \tilde{\mathbf{x}}_2 \in C_k} \|\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2\|_2^2$$

$$(1-\epsilon)\operatorname{Cost}(\mathcal{C}_1,\ldots,\mathcal{C}_k) \leq \overline{\operatorname{Cost}}(\mathcal{C}_1,\ldots,\mathcal{C}_k) \leq (1+\epsilon)\operatorname{Cost}(\mathcal{C}_1,\ldots,\mathcal{C}_k).$$

Upshot: Can cluster in \underline{m} dimensional space (much more efficiently) and minimize $\overline{Cost}(\mathcal{C}_1,\ldots,\mathcal{C}_k)$. The optimal set of clusters will have true cost within $1+\underline{c}\epsilon$ times the true optimal. Good exercise to prove this. $C=\frac{1}{2}$

The Johnson-Lindenstrauss Lemma and High

$$C_{1}^{*} \dots C_{K}^{*} \xrightarrow{\text{Dimensional Geometry}} \text{ clustus.}$$

$$C_{1} \dots C_{K} \xrightarrow{\text{Le further first of law.}} \text{ clustus.}$$

$$C_{1} \dots C_{K} \xrightarrow{\text{Le further first of law.}} \text{ clustus.}$$

$$C_{1} \dots C_{K} \xrightarrow{\text{Le further first of law.}} \text{ clustus.}$$

$$C(C_{1} \dots C_{K}) \leq C(C_{1} \dots C_{K}) \leq C(C_{1} \dots C_{K})$$

$$\leq \frac{1}{1+\epsilon} C(C_{1} \dots C_{K})$$

$$\leq \frac{1}{1+\epsilon} C(C_{1} \dots C_{K})$$

The Johnson-Lindenstrauss Lemma and High Dimensional Geometry

- High-dimensional Euclidean space looks *very different* from low-dimensional space. So how can JL work?
- Is Euclidean distance in high-dimensional meaningless, making JL useless? (The curse of dimensionality)

ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in *d*-dimensional space?

ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in d-dimensional space?

- a) 1 b) $\log d$ c) \sqrt{d} d) d

NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in *d*-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$? (think $\epsilon = .01$)

NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in *d*-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$? (think $\epsilon = .01$)

a) d

b) Θ(d)

c) $\Theta(d^2)$

d) 2^{Θ (d)}

NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$? (think $\epsilon = .01$)

a) d

- b) $\Theta(d)$ c) $\Theta(d^2)$

d) $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$ (be nearly orthogonal).

Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$ (be nearly orthogonal).

Proof: Let $\vec{x}_1, \dots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$ (be nearly orthogonal).

Proof: Let $\vec{x}_1, \dots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

- What is $\|\vec{x}_i\|_2$?=
- What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$?

Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$ (be nearly orthogonal).

Proof: Let $\vec{x}_1, \dots, \vec{x}_t$ each have independent random entries set

- to $\pm 1/\sqrt{d}$. $|\vec{x}_i||_2$? Every \vec{x}_i is always a unit vector. $|\vec{x}_i||_2 = \sqrt{1 1}$
 - What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_i \rangle]$?

Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$ (be nearly orthogonal).

Proof: Let $\vec{x}_1, \dots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

• What is $\|\vec{x}_i\|_2$? Every \vec{x}_i is always a unit vector.

• What is
$$\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$$
? $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = 0$

$$\mathbb{E}\left[\sum_{k=1}^{d} \times_i (k) \cdot \times_j (k)\right] = \sum_{k=1}^{d} \mathbb{E}_{x_i}(k) \times_j (k)$$

$$\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = 0$$

Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$ (be nearly orthogonal).

Proof: Let $\vec{x}_1, \dots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

- What is $\|\vec{x}_i\|_2$? Every \vec{x}_i is always a unit vector.
- What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$? $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = 0$
- By a Chernoff bound, $\Pr[|\langle \vec{x_i}, \vec{x_j} \rangle| \ge \epsilon] \le 2e^{-\epsilon^2 d/6}$ (great exercise).

Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$ (be nearly orthogonal).

Proof: Let $\vec{x}_1, \dots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

- What is $\|\vec{x}_i\|_2$? Every \vec{x}_i is always a unit vector.
- · What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$? $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = 0$
- By a Chernoff bound, $\Pr[|\langle \vec{x}_i, \vec{x}_j \rangle| \ge \epsilon] \le 2e^{-\epsilon^2 d/6}$ (great exercise). $+ = 2e^{\Theta(d)}$
- If we chose $t = \frac{1}{2}e^{\epsilon^2 d/12}$, using a union bound over all $\frac{\binom{t}{2}}{2} \leq \frac{1}{8}e^{\epsilon^2 d/6}$ possible pairs, with probability $\geq 3/4$ all will be nearly orthogonal.

$$\frac{1}{8} e^{\frac{2^{3}}{3} | 12}$$

$$\frac{1}{8} e^{\frac{3}{3} | 12}$$

$$\underbrace{\|\vec{x}_i - \vec{x}_j\|_2^2}$$

we all pairwise dot products at most
$$\epsilon$$
 (think $\epsilon = .0$)
$$\underbrace{\|\vec{x}_i - \vec{x}_j\|_2^2}_{} = \underbrace{\|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T \vec{x}_j}_{} \times_i ^T \times_j ^{=\epsilon} (\times_i, \times_j)$$

$$\|\vec{x}_{i} - \vec{x}_{j}\|_{2}^{2} = \|\vec{x}_{j}\|_{2}^{2} + \|\vec{x}_{j}\|_{2}^{2} - 2\vec{x}_{i}^{T}\vec{x}_{j} \ge 1.98.$$

$$() \leq 01 \text{ in m-simble}$$

$$\leq 2.02$$

Up Shot: In *d*-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T \vec{x}_j \ge 1.98.$$

Even with an exponential number of random vector samples, we don't see any nearby vectors.

Up Shot: In *d*-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T \vec{x}_j \ge 1.98.$$

Even with an exponential number of random vector samples, we don't see any nearby vectors.

 Can make methods like nearest neighbor classification or clustering useless.

Up Shot: In *d*-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T \vec{x}_j \ge 1.98.$$

Even with an exponential number of random vector samples, we don't see any nearby vectors.

• Can make methods like nearest neighbor classification or clustering useless.

Curse of dimensionality for sampling/learning functions in high-dimensional space – samples are very 'sparse' unless we have a huge amount of data.

Up Shot: In *d*-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T \vec{x}_j \ge 1.98.$$

Even with an exponential number of random vector samples, we don't see any nearby vectors.

• Can make methods like nearest neighbor classification or clustering useless.

Curse of dimensionality for sampling/learning functions in high-dimensional space – samples are very 'sparse' unless we have a huge amount of data.

· Only hope is if we lots of structure (which we typically do...)

CURSE OF DIMENSIONALITY

Distances for MNIST Digits:

Distances for Random Images:

CURSE OF DIMENSIONALITY

Distances for MNIST Digits:

Distances for Random Images:

Another Interpretation: Tells us that random data can be a very bad model for actual input data.

Recall: The Johnson Lindenstrauss lemma states that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2 \le \|\mathbf{\Pi}\vec{x}_i - \mathbf{\Pi}\vec{x}_j\|_2^2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2.$$

Recall: The Johnson Lindenstrauss lemma states that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2 \le \|\mathbf{\Pi}\vec{x}_i - \mathbf{\Pi}\vec{x}_j\|_2^2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2.$$

Implies: If $\vec{x}_1, \ldots, \vec{x}_n$ are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon/8$), then $\frac{\Pi \vec{x}_1}{\|\Pi \vec{x}_1\|_2}, \ldots, \frac{\Pi \vec{x}_n}{\|\Pi \vec{x}_n\|_2}$ are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ).

Recall: The Johnson Lindenstrauss lemma states that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2 \le \|\mathbf{\Pi}\vec{x}_i - \mathbf{\Pi}\vec{x}_j\|_2^2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2.$$

Implies: If $\vec{x}_1, \ldots, \vec{x}_n$ are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon/8$), then $\frac{\Pi \vec{x}_1}{\|\Pi \vec{x}_1\|_2}, \ldots, \frac{\Pi \vec{x}_n}{\|\Pi \vec{x}_n\|_2}$ are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ).

· Algebra is a bit messy but a good exercise to partially work through.

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.

• For both these to hold it might be that $n \leq 2^{O(\epsilon^2 m)}$.

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

- For both these to hold it might be that $n \leq 2^{O(\epsilon^2 m)}$.
- $\cdot \ 2^{O(\epsilon^2 m)} = 2^{O(\log n)} \ge n.$

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

- For both these to hold it might be that $n \leq 2^{O(\epsilon^2 m)}$.
- $2^{O(\epsilon^2 m)} = 2^{O(\log n)} \ge n$. Tells us that the JL lemma is optimal up to constants.

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

- For both these to hold it might be that $n \leq 2^{O(\epsilon^2 m)}$.
- $2^{O(\epsilon^2 m)} = 2^{O(\log n)} \ge n$. Tells us that the JL lemma is optimal up to constants.
- m is chosen just large enough so that the odd geometry of d-dimensional space still holds on the n points in question after projection to a much lower dimensional space.

Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$.

Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$.

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface?

Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$.

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface?

Volume of a radius R ball is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} \cdot R^d$.

Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$.

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface? Answer: all but a $(1 - \epsilon)^d \le e^{-\epsilon d}$ fraction. Exponentially small in the dimension d!

Volume of a radius R ball is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} \cdot R^d$.

All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface.

All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \le 1$, nearly all will have $\|x\|_2 \ge 1 - \epsilon$.

All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \le 1$, nearly all will have $\|x\|_2 \ge 1 - \epsilon$.

• Isoperimetric inequality: the ball has the minimum surface area/volume ratio of any shape.

All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \le 1$, nearly all will have $\|x\|_2 \ge 1 - \epsilon$.

• Isoperimetric inequality: the ball has the minimum surface area/volume ratio of any shape.

• If we randomly sample points from any high-dimensional shape, nearly all will fall near its surface.

All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \le 1$, nearly all will have $\|x\|_2 \ge 1 - \epsilon$.

• Isoperimetric inequality: the ball has the minimum surface area/volume ratio of any shape.

- If we randomly sample points from any high-dimensional shape, nearly all will fall near its surface.
- · 'All points are outliers.'

What fraction of the cubes are visible on the surface of the cube?

What fraction of the cubes are visible on the surface of the cube?

$$\frac{10^3 - 8^3}{10^3} = \frac{1000 - 512}{1000} = .488.$$

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator?

Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator? Answer: all but a $2^{\Theta(-\epsilon^2 d)}$ fraction.

Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator? Answer: all but a $2^{\Theta(-\epsilon^2 d)}$ fraction.

Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$

By symmetry, all but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume falls within ϵ of any equator! $S = \{x \in \mathcal{B}_d : |\langle x, t \rangle| \le \epsilon\}$

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.

How is this possible?

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.

How is this possible? High-dimensional space looks nothing like this picture!

Summary: