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COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.
Lecture 11



LOGISTICS

- Problem Set 2 was due yesterday. go\\)\-‘“Y‘ S ’133@)&2 :

- Quiz 5 is due today at 8pm.

- The exam will be held next Thursday-Friday. Let me know
ASAP if you need accommodations (e.g., extended time).

- My office hours this week and next will focus on exam review
and going through practice questions.



SUMMARY

Last Class: The Johnson-Lindenstrauss Lemma

- Low-distortion embeddings for any set of points via random
projection.

- Started on proof of the JL Lemma via the Distributional JL
Lemma.



SUMMARY

Last Class: The Johnson-Lindenstrauss Lemma

- Low-distortion embeddings for any set of points via random
projection.

- Started on proof of the JL Lemma via the Distributional JL
Lemma.

This Class:

- Finish Up proof of the JL lemma.
- Example applications te-etassifreation and clustering.

- Discuss connections to high dimensional geometry.



THE JOHNSON-LINDENSTRAUSS LEMMA

7~

Johnson-Lindenstrauss Lemma: For any set of points
X1,..., %, € R?and e > 0 there exists a linear map M : RY — R™
suchthatm=0 (log”) and letting % = NX;:

Foralli,j: (1—e)llX — Xjll2 < I = Xjll2 < (1+ €)[IX; — Xjll2-
N~

Further, if M e R™*? has each entry chosen iid. from
N(0,1/m)and m = 0 <l°g£/6>, M satisfies the guarantee with
probability > 1 — 4.




THE JOHNSON-LINDENSTRAUSS LEMMA

7~

Johnson-Lindenstrauss Lemma: For any set of points
X1,..., % € R?and e > 0 there exists a linear map M : RY — R™
suchthatm=0 (log”) and letting % = NX;:

Foralli,j: (1= e)lX = Xll2 < 1% = Xll2 < (1+ €)[IX; = Xl2-

Further, if M e R™*? has each entry chosen iid. from
N(0,1/m)and m = 0 <l°g£/6>, M satisfies the guarantee with
probability > 1 — 4.

d-dimensional space m-dimensional space

) (for m << d)
o Y " ®
[ ] Random linear
° function e R™? @ o °
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e =50,7\ . //‘/
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DISTRIBUTIONAL JL

We showed that the Johnson-Lindenstrauss Lemma follows from:

Distributional JL Lemma: Let M € R™*¢ have each entry cho-

sen i.i.d. as N'(0,1/m). If we set m = O (log(eﬂ) then for any

y e RY with probability > 1— 5/(\\_
(1=l < Il < (1 + &) IYlla-




DISTRIBUTIONAL JL

We showed that the Johnson-Lindenstrauss Lemma follows from:

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.id. as A(0,1/m). If we set m = O (log(eﬂ) then for any
v < RY with probability > 1 -6

Ih U/ \e ( V\/é\
3 } o lelTsY, Tel
A=W <IN <O+l —& ° =

Main Idea: Union bound over (9) difference vectors ¥ = X — Xi.

el vl .
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DISTRIBUTIONAL JL PROOF

7

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O (log(€1/5 ) then for any

y « RY with probability >1—6

(1=l < IMYll2 < (1+ €)lI¥ll2-

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection. d: original dim. m: compressed dim, e: error, §: failure prob.




DISTRIBUTIONAL JL PROOF

7

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O log(wd) then

, with probability >1—14§ j - B(ll

(1=l < IMYll2 < (1+ €)lI¥ll2-

* Let y denote_Ny and let N(j) denote the j row of M.

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection. d: original dim. m: compressed dim, e: error, §: failure prob.




DISTRIBUTIONAL JL PROOF

7

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O (log(w ) then

, with probability >1—14§

(1=l < IMYll2 < (1+ €)lI¥ll2-

- Let y denote I'I)7 and let N(j) denote the j row of N.
- Q
 Foranyj, y y} m 1 - [8\&

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection. d: original dim. m: compressed dim, e: error, §: failure prob.
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Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O (log(w ) then

, with probability >1—14§

(1=l < IMYll2 < (1+ €)lI¥ll2-

- Let y denote I'I)7 and let N(j) denote the j row of N.
- Forany j, ¥(j) ), %)

n y

() 21
01 -12 34 67 .10 —49.. Y2

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection. d: original dim. m: compressed dim, e: error, §: failure prob.
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Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O (log(w ) then

, with probability >1—14§

(1=l < IMYll2 < (1+ €)lI¥ll2-

- Let y denote I'I)7 and let N(j) denote the j row of N.
- Forany j, ¥(j) )Z} Z, 18-V ()Whereg,w./\/(__g/m

ng) Q
Bm“m .67 10 —.49.. % (} )

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection. d: original dim. m: compressed dim, e: error, §: failure prob.




DISTRIBUTIONAL JL PROOF
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Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O (@) then
, with probability >1—14§

(1=l < IMYll2 < (1+ €)lI¥ll2-

- Let y denote Ny and let N(j) denote the j row of N. lfom
- Forany j, () = (N().¥) = <= X1, & - ¥(i) where g ~ A7(0,1).
nT T—

1(j) 21
01 -12 34 67 .10 —49.. Y2
Y3

Qe wb‘.;\)(o,,/,;
PRI U"‘“‘y NS L\Ta‘- N(O\l>

\]nf\ Ya

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection. d: original dim. m: compressed dim, e: error, §: failure prob. 5




DISTRIBUTIONAL JL PROOF

~\ ~
* Lety denote My and let N(j) denote the j™ row of . \\\5\\ - U\ﬁ“
-+ Forany j, ¥(j) = (N(),¥) = <= 30, g - (i) where g ~ A(0,7).

———

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): jt" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable. 6




DISTRIBUTIONAL JL PROOF

- Lety denote I'Iy and let N(j) denote the j row of N.

* Forany j, y()) J), V) = \FE'— - y(i) where gj ~ N(0,1).
- g Y(i) ~ N(O,y( )? ). a normal distribution

—_—

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): jt" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable. 6




DISTRIBUTIONAL JL PROOF

- Let y denote Ny and let N(j) denote the ;™ row of M.
+ Forany j, () = (N().5) = = X1, & - ¥(i) where g ~ A(0,1).
- g - (i) ~ N(0,¥(i)?): a normal distribution

variance 1 variance y(i)?

{_l_\ A
I \

VANERVAN

gi gi-y@)

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): jt" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable. 6




DISTRIBUTIONAL JL PROOF

- Let y denote Ny and let N(j) denote the ;™ row of M.
+ Forany j, () = (N().5) = = X1, & - ¥(i) where g ~ A(0,1).
- g - (i) ~ N(0,¥(i)?): a normal distribution

variance y(1)? variance y(d)?

variance y(2)?
1

e
y() =\/—m[gl YD) + g, y@2) + .+ gy -y(d)]

¥ € RY: arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable.




DISTRIBUTIONAL JL PROOF

- Let y denote Ny and let N(j) denote the ;™ row of M.
+ Forany j, () = (N().5) = = X1, & - ¥(i) where g ~ A(0,1).
- g - (i) ~ N(0,¥(i)?): a normal distribution

variance y(1)? variance y(d)?

variance y(2)?
1

1
y() =\/—m[gl YD) + g, y@2) + .+ gy -y(d)]

5,\'\\\ [ Sad AR
7

¥ € RY: arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable.
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- Let y denote Ny and let N(j) denote the ;™ row of M.
+ Forany j, () = (N().5) = = X1, & - ¥(i) where g ~ A(0,1).
- g - (i) ~ N(0,¥(i)?): a normal distribution

variance y(1)? variance y(d)?

variance y(2)?
1

1
y() =\/—m[gl YD) + g, y@2) + .+ gy -y(d)]

Also Gaussian!

¥ € RY: arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable.




DISTRIBUTIONAL JL PROOF

Letting y = Ny, we have y(j) = (N(j), V) and:

d
§() = % Zg (i) where g - (i) ~ N(0, 7()?).

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

Letting y = Ny, we have y(j) = (N(j), V) and:

d
§() = % Zg (i) where g - (i) ~ N(0, 7()?).

Stahility of Gaussian Random Variables. For an~

—_——

N(\m,a%) andwgg) we have: - \%\\‘Q,w—l i

——\
a+b~N(u + p, 07 + 03)
@—‘\/\/\/

|\

@?.,L\-i\ur\

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

Letting y = Ny, we have y(j) = (N(j), V) and:

d
§() = % Zg (i) where g - (i) ~ N(0, 7()?).

Stability of Gaussian Random Variables. For an~
N(m,0%) and b ~ N (1, 02) we have:

a+b~N(u + p, 01 + 03)

VANYINLIVANS

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

Letting y = Ny, we have y(j) = (N(j), V) and:

1T S . L
yU) = N ;_%'/y(/) where g; - y(i) ~ N(0,¥(i)").

Stability of Gaussian Random Variables. For an~
N(m,0%) and b ~ N (1, 02) we have:

a+b~N(u + p, 01 + 03)

Thus, () ~ ZN (0,51 + V) + ... +¥(d)?) @(D“\E\\N(Dl ”j”w>
\\3\\{’

V € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable v
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Letting y = Ny, we have y(j) = (N(j), V) and:

d
§() = % Zg (i) where g - (i) ~ N(0, 7()?).

Stability of Gaussian Random Variables. For an~
N(m,0%) and b ~ N (1, 02) we have:

a+b~N(u + p, 01 + 03)

Thus, §(j) ~ <=0, [72)

1
Vvm

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable 7
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Letting y = Ny, we have y(j) = (N(j), V) and:

d
§() = % Zg (i) where g - (i) ~ N(0, 7()?).

Stability of Gaussian Random Variables. For an~
N(m,0%) and b ~ N (1, 02) we have:

a+b~N(u + p, 01 + 03)

Thus, y(j) ~

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable 7




Letting y = Ny, we have y(j) = (N(j), V) and: E//\T j[‘j& = Lﬂ

d
§() = % Zg (i) where g - (i) ~ N(0, 7()?).

Stability of Gaussian Random Variables. For an~
N(m,0%) and b ~ N (1, 02) we have:

a+b~N(u + p, 01 + 03)

Thus, y(j) ~ le, V itself is a random Gaussian vector.

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable 7




DISTRIBUTIONAL JL PROOF

Letting y = Ny, we have y(j) = (N(j), V) and: L“ﬂ‘ j g = ﬂtﬁ L\?\g Il
d G\USS‘ uv)
) = % ;g; -¥(i) where g; - (i) ~ N(0, ¥(i)?). UAMAR

Stability of Gaussian Random Variables. For an~
N(m,0%) and b ~ N (1, 02) we have: — - i
Iy FUEEN
N j/ 7 X ]

a+b~N(u + p, 01 + 03) -

Thus, y(j) ~ le, V itself is a random Gaussian vector.

Stability is another explanation for the

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable 7




DISTRIBUTIONAL JL PROOF

G |G () = ()

So far: Letting M € RY*™ have each entry chosen i.i.d. as N(0,1/m),
forany y € RY, letting y = My

) ~ N Y112/ m)-

¥ € RY arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

Cond™ Sro Ak NS iyl o W .
So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = My

y(j) ~ N0, 1713/ m).
A%

—_—

Vor (§4))

¥ € RY arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable
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So far: Letting M € RY*™ have each entry chosen i.i.d. as N'(0,1/m),
forany y € RY, letting y = My

Y() ~ N0, 1713/ m).

E[IFI3 =E | >_§0)’
j=1

¥ € RY arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable
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So far: Letting M € RY*™ have each entry chosen i.i.d. as N'(0,1/m),
forany y € RY, letting y = My

Y() ~ N0, 1713/ m).

E(9IE1 =E | > 06| =D EHG)]
j=1 j=1

¥ € RY arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable
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So far: Letting M € RY*™ have each entry chosen i.i.d. as N'(0,1/m),
forany y € RY, letting y = My 9
5) ~ N 0,712/ m). N
Ve (54)) (s > - g
E[|I§113] = Zy = Z

¥ € RY arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable
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So far: Letting M € RY*™ have each entry chosen i.i.d. as N'(0,1/m),
forany y € RY, letting y = My

Y() ~ N0, 1713/ m).

(9151 =E | > 90)*| =D EF()]
j=1

—_—

¥ € RY arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable
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So far: Letting M € RY*™ have each entry chosen i.i.d. as N'(0,1/m),
forany y € RY, letting y = My

() ~ N(0, [7115/m).
= lkxﬁ\\f

E(9IE1 =E | > 06| =D EHG)]
j=1 j=1

m -
_ Z 17113 _

— m

j=1

¥ € RY arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable
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So far: Letting M € RY*™ have each entry chosen i.i.d. as N'(0,1/m),
forany y € RY, letting y = My

Y() ~ N0, 1713/ m).

E(9IE1 =E | > 06| =D EHG)]
j=1 j=1

m -
_ Z 17113 _

— m

j=1

So y has the right norm in expectation.

¥ € RY arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable
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So far: Letting M € RY*™ have each entry chosen i.i.d. as N'(0,1/m),
forany y € RY, letting y = My

Y() ~ N0, 1713/ m).

E(9IE1 =E | > 06| =D EHG)]
j=1 j=1

m -
_ Z 17113 _

— m

j=1

So y has the right norm in expectation.

¥ € RY arbitrary vector, § € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

So Far: Each entry of our compressed vector y is Gaussian with :

§() ~ N(0, [[¥13/m) and E[[[§3] = [IV5

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping ¥ — V. d: original dimension. m: compressed dimension,
e: embedding error, 6: embedding failure prob.
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So Far: Each entry of our compressed vector y is Gaussian with :

§() ~ N(0, [[¥13/m) and E[[[§3] = [IV5

19112 = S, ¥(j)? a Chi-Squared random variable with m degrees of

——

freedom (a sum of m squared independent Gaussians)

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping ¥ — V. d: original dimension. m: compressed dimension,
e: embedding error, 6: embedding failure prob.




DISTRIBUTIONAL JL PROOF

So Far: Each entry of our compressed vector y is Gaussian with :
Y(j) ~ N (0, [I7lI7/m) and E[|[§]13] = (V]2

19112 = S, ¥(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m_squared independent Gaussians)

filx)
0.5

Xi

0.4
0.3
0.2 / N

0.1 N

El O R
I

0.0 =
0 :

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping ¥ — V. d: original dimension. m: compressed dimension,
e: embedding error, 6: embedding failure prob.




DISTRIBUTIONAL JL PROOF

So Far: Each entry of our compressed vector y is Gaussian with :
Y(j) ~ N(0, [[¥l13/m) and E[||¥]12] = [I¥13

1915 = X212, 9(7)* a
(a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom, € >0,

Pr{|z — EZ| > eEZ] < 2e~™</8,
S

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*%: random
projection mapping ¥ — V. d: original dimension. m: compressed dimension,
e: embedding error, §: embedding failure prob.




DISTRIBUTIONAL JL PROOF

So Far: Each entry of our compressed vector y is Gaussian WI’Rh e v
€z oo - saes g [
S Filow pov. YU) ~ N(O, I¥13/m) and E[[I§[3] = I} &

Iyl5 = Zi:1 y(j)* a

(a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Ch|—
Squared random variable with m degrees of freedom, {Lj N

Rl 2= ezt RS

If we setm =0 (log(w ) with probability 1 — O(e~0801/9)) > 1 — 4
\@— -

(1= VI3 < 1913 < (1 + V-

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping ¥ — V. d: original dimension. m: compressed dimension,
e: embedding error, §: embedding failure prob.
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So Far: Each entry of our compressed vector y is Gaussian with :

Y(j) ~ N(0, [[¥13/m) and E[[Iy3] = [I¥]12
19112 = S, ¥(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr{|z — EZ| > eEZ] < 2e~™</8,

If we setm =0 (log“/‘; ) with probability 1 — O(e~08(1/9)) > 1 — 4

(1= IVIIZ < V113 < (1+ e)IF3.

Gives the distributional JL Lemma and thus the classic JL Lemma!



EXAMPLE APPLICATION: R-MEANS CLUSTERING

Goal: Separate n points in d dimensional space into k groups.

10



EXAMPLE APPLICATION: R-MEANS CLUSTERING

Goal: Separate n points in d dimensional space into k groups.

k
k-means Objective: Cost(Cy,...,Cr) = C:n|rgkz > X = 3.

J=1 )?EC}?

10



EXAMPLE APPLICATION: R-MEANS CLUSTERING

Goal: Separate n points in d dimensional space into k groups.

o
o
Y wm @ &‘
|
® [ Y]
P o
o
O U2
° o
P o
o
k-means Objective: Cost(C, ... = )
j H(Cr, - C) = min ZZIIX w3
f 1X€Ck
Write in terms of distances: ﬁ

Cost(Cr, ..., Ce) = min, Z > I% %l
_W 10



EXAMPLE APPLICATION: R-MEANS CLUSTERING

k-means Objective: Cost(Cy,...,Cr) = Jmin Z > |><1—><2||2

I 1 X1,%,€Cy



EXAMPLE APPLICATION: R-MEANS CLUSTERING

k-means Objective: Cost(Cy,...,Cr) = Jmin Z SO K =R 0f
I 1 X1,%,€Cy
we randomly projecttom =0 ( ) dimensions, for all pairs X1ZX2,

(1= % = Rll < 1K1 = %ol < (14 €) 151 — Xol3
v/



EXAMPLE APPLICATION: R-MEANS CLUSTERING

k-means Objective: Cost(Cy,...,Cr) = Jmin Z S IFK =R
I 1 X1,%,€Cy
we randomly projectto m = O (log”> dimensions, for all pairs X;, X,

(1= lI% =Rl < 1% = X[l2 < (1 + €)% = X} =

Letting Cost(Cy, ..., Ck) = Jmin Z > ||x1—x2\|2

\_/; 1 %1,%€C

(1—e€)Cost(C,...,Cr) < Cost(Cr,...,Ck) < (1+¢€)Cost(C,...,Cr).




EXAMPLE APPLICATION: R-MEANS CLUSTERING

k-means Objective: Cost(Cy,...,Cr) = Jmin Z S IFK =R

I 1 X1,%,€Cy

we randomly project to dimenS|ons, for all pairs X;, X5,

(1= lI% =Rl < 1% = X[l2 < (1 + €)% = X} =

Letting Cost(Cy, ..., Ck) = Jmin Z > IK = %3

- ; 1 %1,%€C

C_D 1—¢€)Cost(Cy, .. .,Cr) < Cost(C,...,Ck) < (14 €)Cost(Cy, . .., Cp).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(Cy, ..., Ck). The optimal set of clusters
will have true cost within 1+ ce times the true optimal. Good

_(—s

exercise to prove this. a -






The Johnson-Lindenstrauss Lemma and High
Dimensional Geometry

- High-dimensional Euclidean space looks very different from
low-dimensional space. So how can JL work?

- Is Euclidean distance in high-dimensional meaningless,
making JL useless? (The curse of dimensionality)
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NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that

have all pairwise dot products |(X,y)| < €? (think e = .01
a)d b) o(d) 0 6(d?) d) 2900
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NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that
have all pairwise dot products |(X,y)| < €? (think e = .01)

a)d b) ©(d) c) ©(d?) d) 20(d)

— Y —
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NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that
have all pairwise dot products |(X,y)| < €? (think e = .01)

a)d b) ©(d) c) O(d?) d) 20()

In fact, an exponentially large set of random vectors will be nearly
pairwise orthogonal with high probability!

14



ORTHOGONAL VECTORS PROOF

Claim: 28(¢9) random d-dimensional unit vectors will have all
pairwise dot products |(X,)| < e (be nearly orthogonal).
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ORTHOGONAL VECTORS PROOF

Claim: 28(¢9) random d-dimensional unit vectors will have all
pairwise dot products |(X,)| < e (be nearly orthogonal).

Proof: Let Xi,...,X; each have independent random entries set

to :|:’|/\/8. P :\/" r S \%l\ < J :Z‘X(()L

- What is [[X[|,? Every X; is always a unit vector. 0 Z
- What is E[(X;, X})]? b
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ORTHOGONAL VECTORS PROOF

Claim: 28(¢9) random d-dimensional unit vectors will have all
pairwise dot products |(X,)| < e (be nearly orthogonal).

Proof: Let Xi,...,X; each have independent random entries set

to +1/v/d.

- What is [[X[[,? Every X; is always a unit vector.
+ What is E[(%,,%)]7 B[(%,X)] = 0
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ORTHOGONAL VECTORS PROOF

Claim: 28(¢9) random d-dimensional unit vectors will have all
pairwise dot products |(X,)| < e (be nearly orthogonal).

Proof: Let Xi,...,X; each have independent random entries set

to +£1/V/d.
- What is [[X[[,? Every X; is always a unit vector.
- What is E[(X;. X))]? E[(X;,X;)] =0

© By a Chernoff bound, Prl|(¥;, X)| > €] < 2e~9/® (great
exercise).



ORTHOGONAL VECTORS PROOF

D

Claim: 28(¢9) random d-dimensional unit vectors will have all
pairwise dot products |(X,)| < e (be nearly orthogonal).

Proof: Let Xi,...,X; each have independent random entries set

to +1/v/d.

- What is [[X[[,? Every X; is always a unit vector.

- What is B[(7. %)]? E[(%,%)] = 0

- By a Chernoff bound, Pr[|(%,,X)| > ¢] < 2e~<9/6 (great
exercise). Jlf] & ©

- If we chose t = 1e“4/"?, using a union bound over all
(1) < Le?d/® possible pairs, with probability > 3/4 all will be

T4 A
nearlyt{éhoggnfllq \v[i\ij I@I/X)—>(<€



CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of 22(€’d) random unit
vectors have all pairwise dot products at most e (think e = .01)

-
[ evdh _ L - -
— e €=l 7 = -0 D)

v~
Jd = 12003 Q:L'-cl,/lj_:?D
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CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of 22(€’d) random unit
vectors have all pairwise dot products at most e (think e = .01)

I1Xi = X112
—_—
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CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of 22(€’d) random unit
vectors have all pairwise dot products at most e (think e = .01)

— — — — ST
1K = X112 = [IXil12 + I1X)]12 — 2%/

—_—

C i
R CT
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CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of 22(€’d) random unit
vectors have all pairwise dot products at most e (think e = .01)

I%; - %13 = ”i'b + ||>§ = mj >1.98.
~ O) ;/\ m-..;.r;\ltu};.

S a9
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Up Shot: In d-dimensional space, a set of 22(€’d) random unit
vectors have all pairwise dot products at most e (think e = .01)

T=>

I = %13 = 1515 + 1% 3 - 27%; > 1.98.

Even with an exponential number of random vector samples,
we don't see any nearby vectors.
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CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of 22(€’d) random unit
vectors have all pairwise dot products at most e (think e = .01)

T=>

I = %13 = 1515 + 1% 3 - 27%; > 1.98.

Even with an exponential number of random vector samples,
we don't see any nearby vectors.

- Can make methods like nearest neighbor classification or
clustering useless.

Curse of dimensionality for sampling/learning functions in
high-dimensional space — samples are very ‘sparse’ unless we
have a huge amount of data.

- Only hope is if we lots of structure (which we typically do...)
16



CURSE OF DIMENSIONALITY

Distances for MNIST Digits:
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Distances for Random Images:

x10”

17



CURSE OF DIMENSIONALITY

Distances for MNIST Digits:

o
[~
o
(2]
0
0
0

S N
CPVLY LY
QWb ws Y
e LSRR
A ong
[N N
SNUNYNA
%0 X % ® o
H0OOVWPVI

Distances for Random Images:

x10”

Another Interpretation: Tells us that random data can be a very bad
model for actual input data. 17



CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if
N < R4 is a random matrix (linear map) with m = 0 (log”>,

for X;,..., X, € R? with high probability, for all i, :

(1= )l = %[5 < [NX; - NX[3 < (1 + 1% — X2
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CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if
N < R4 is a random matrix (linear map) with m = 0 (log”>,

for X;,..., X, € R? with high probability, for all i, :

(1= )l = %[5 < [NX; - NX[3 < (1 + 1% — X2

Implies: If Xi,...,X, are nearly orthogonal unit vectors in

d-dimensions (with pairwise dot products bounded by ¢/8),
I'I)?q I'I)?n H H

then AR AT nearly orthogonal unit vectors in

m-dimensions (with pairwise dot products bounded by e).
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CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if
N < R4 is a random matrix (linear map) with m = 0 (log”>,

for X;,..., X, € R? with high probability, for all i, :

(1= )l = %[5 < [NX; - NX[3 < (1 + 1% — X2

Implies: If Xi,...,X, are nearly orthogonal unit vectors in
d-dimensions (with pairwise dot products bounded by ¢/8),
then ¥ . M 5re nearly orthogonal unit vectors in

x> Ml
m-dimensions (with pairwise dot products bounded by e).

- Algebra is a bit messy but a good exercise to partially work
through.

18



CONNECTION TO DIMENSIONALITY REDUCTION

Claim 1: n nearly orthogonal unit vectors can be projected to
m=20 (l"%) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 20(¢™) nearly
orthogonal vectors.
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Claim 1: n nearly orthogonal unit vectors can be projected to
m=20 (l"%) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 20(¢™) nearly
orthogonal vectors.

- For both these to hold it might be that n < 20(¢'m),
. 20(ezm) _ 2O(logn) > n.
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CONNECTION TO DIMENSIONALITY REDUCTION

Claim 1: n nearly orthogonal unit vectors can be projected to
m=20 (l"%) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 20(¢™) nearly
orthogonal vectors.

- For both these to hold it might be that n < 20(¢'m),

- 20(e?m) — 70(logn) > n Tells us that the JL lemma is optimal
up to constants.
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CONNECTION TO DIMENSIONALITY REDUCTION

Claim 1: n nearly orthogonal unit vectors can be projected to
m=20 (l"%) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 20(¢™) nearly
orthogonal vectors.

- For both these to hold it might be that n < 20(¢'m),

- 20(em) = 20(logn) > n Tells us that the JL lemma is optimal
up to constants.

- m is chosen just large enough so that the odd geometry of
d-dimensional space still holds on the n points in question
after projection to a much lower dimensional space.

19



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Let By be the unit ball in d dimensions. By = {x € R? : ||x||, < 1}.
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BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Let By be the unit ball in d dimensions. By = {x € RY : ||x||; < 1}.

What percentage of the volume of By falls within e distance of its
surface? Answer: all but a (1 — €)? < e~ fraction. Exponentially
small in the dimension d!

d
Volume of a radius R ball is ¢f7; - RY.

20



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

All but an e~< fraction of a unit ball's volume is within e of its
surface.
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have ||x]. > 1—e
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BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

All but an e~ fraction of a unit ball's volume is within e of its
surface. If we randomly sample points with ||x||, < 1, nearly all will
have ||x|l, > 1—e.

- Isoperimetric inequality: the ball has the minimum surface
area/volume ratio of any shape.

ooQ

+ If we randomly sample points from any high-dimensional shape,
nearly all will fall near its surface.

- ‘All points are outliers! 21



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

What fraction of the cubes are visible on the surface of the
cube?




BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

What fraction of the cubes are visible on the surface of the
cube?

-

10° — 8% 1000 — 512
10 1000

'-’ a ..-‘

= .488.
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BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

What percentage of the volume of By falls within e distance of its
equator? Answer: all but a 22(=<'d) fraction.

Formally: volume of set S = {x € By : |x(1)| < €}.

By symmetry, all but a 29(—<'d) fraction of the volume falls within ¢ of
any equator! S={x € By : [{(x,t)| < €}



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Claim 1: All but a 29(=<'9) fraction of the volume of a ball falls within
e of any equator.

Claim 2: All but a 28(=<9) fraction falls within € of its surface.
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BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Claim 1: All but a 29(=<'9) fraction of the volume of a ball falls within
e of any equator.

Claim 2: All but a 28(=<9) fraction falls within € of its surface.

How is this possible? High-dimensional space looks nothing like this
picture!



Summary:
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