
COMPSCI 514: Problem Set 4

Released: Tuesday 11/3.

Due: Wednesday 11/18 by 8:00pm in Gradescope.

Instructions:

• Each group should work together to produce a single solution set. One member should submit
a solution pdf to Gradescope, marking the other members as part of their group.

• You may talk to members of other groups at a high level about the problems but not work
through the solutions in detail together.

• You must show your work/derive any answers as part of the solutions to receive full credit.
Include code (screenshots are fine) for any problem where it is used.

1. The Many Applications of SVD (11 points)

1. (2 points) Consider invertible A ∈ Rd×d with SVD A = UΣVT . Prove that A−1 = VΣ−1UT .

2. (4 points) Consider any A ∈ Rn×d with SVD A = UΣVT . One of the most classic data
fitting methods, least squares regression is: given a vector ~y ∈ Rn, find:

~β∗ ∈ arg min
~β∈Rd

‖A~β − ~y‖22. (1)

The rows of A represent d-dimensional data points, the entries of ~y represent observations
at these points, and A~β∗ is the ‘line of best fit’, which attempts to fit these observations as
closely as possible with a linear function of the rows. Prove that ~β∗ = VΣ−1UT~y satisfies
equation (1) above. Avoid using any calculus in your proof. Hint: The solution will involve
a projection matrix.

3. (1 point) Describe in a few sentences how part (2) relates to part (1). What is ‖A~β∗ − ~y‖22
when A is square and invertible?

4. (2 points) Prove that ‖A‖2F =
∑rank(A)

i=1 σi(A)2, where σi(A) is the ith singular value of A.
Hint: One approach is to use the identity shown in the last problem set, that ‖A‖2F =
tr(ATA) = tr(AAT ).

5. (2 points) The spectral norm (or operator norm) of a matrix A is the maximum amount that
applying that matrix can increase the length of a vector. Formally, ‖A‖2 = max~x:‖~x‖2=1 ‖A~x‖2.
Beware that the notation is a bit confusing – for the matrix A, ‖A‖2 denotes the spectral
norm, while for the vector A~x, ‖A~x‖2 denotes the standard Euclidean norm.

Prove that ‖A‖2 = σ1(A). Hint: There are many approaches here. One is to use the
Courant-Fischer characterization of the eigenvalues of a matrix discussed in class.
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2. Recovering Locations from Distances (13 points + 9 points bonus)

Suppose you are given all pairs distances between a set of n points ~p1, ~p2, . . . , ~pn ∈ Rd, with n > d.
Formally, you are given an n × n matrix D with Di,j = ‖~pi − ~pj‖22. You would like to recover the
location of the original points, up to possible translations, rotations, and reflections, which will not
change the pairwise distances.1 Let P ∈ Rn×d be the matrix with the n points as rows.

1. (3 points) Give an upper bound on rank(D). Hint: Expand out ‖~pi− ~pj‖22 as a dot product.

2. (4 points) Show that:

(PPT )i,j = −1
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Hint: Since we can only recover the points up to translations anyways, you can assume
without loss of generality that the points are have zero mean. I.e.,

∑n
i=1 ~pi = ~0.

3. (3 points) Describe an algorithm that, given D, uses the formula above to recover ~p1, ~p2, . . . , ~pn ∈
Rd up to rotation and translation. Hint: Even if you haven’t figured out part (2), you can
use the given formula to solve this part.

4. (3 points) Run your algorithm on the U.S. cities dataset provided in UScities.txt and plot
the output. The distances in the file are Euclidean distances ‖~pi− ~pj‖2 so you need to square
them to obtain D. Does the output make sense? Plot the estimated city locations and identify
a few cities in your plot. Submit your code with the problem set.

5. Bonus: (1 point) Plot the spectrum of the distance matrix D from part (4). Is the rank of
D what was predicted in part (1)? What might be an explanation for any deviations?

6. Bonus: (8 points – quite challenging!) The problem of location recovery is closely related to
both triangulation in surveying/mapping and matrix completion. Let’s assume that for the
U.S. cities dataset we actually only know the distance from every city to three other reference
cities. That is, we know just three columns D.

(a) (3 points) Describe an algorithm that recovers the full distance matrix D using just these
three columns. Hint: Given three columns of D, think about how to find four vectors
that span all columns of D, using the ideas of parts (1)-(3). Then think about how to
recover all the columns of D from this span.

(b) (2 points) Describe the geometric intuition, perhaps using a picture, behind why we
can recover all distances, and in turn city locations, given just the distances with three
reference cities. This intuition doesn’t have to exactly align with your algorithm above.

(c) (3 points) Implement your algorithm and use it to recover the distance matrix D for
the U.S. cities dataset. There will be some error due to approximation errors. Let D̃

represent your recovered distance matrix. What is ‖D−D̃‖F‖D‖F ? Did you algorithm work

well? Use your recovered matrix D̃ to recover approximate positions of the U.S. cities.
How do your results look in comparison to those of part (4).

1Formally, you want to recover the points up to a translation plus multiplication by an orthogonal matrix, which
performs a unitary transformation https://en.wikipedia.org/wiki/Unitary_transformation
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3. Stochastic Block Model Generalized (9 points + 4 bonus)

In class we applied spectral methods to partition a graph into two large subsets of vertices with
relatively few connections between them. We discussed how spectral clustering can be used to
partition a graph into k > 2 pieces by combining a rank-k spectral embedding with e.g., k-means
clustering. In this problem we will consider this method applied to the stochastic block model with
a larger number of communities.

Let Gn,3(p, q) be the distribution over random graphs where n is divided into three subsets
X,Y, Z each with n/3 nodes in them (assume for simplicity that n is divisible by 3). Node i, j are
connected with probability p if they are in the same subset (X,Y, or Z) and with probability q < p
if they are in different subsets. Connections are all made independently.

1. (2 points) Consider drawing a random graph G ∼ Gn,3(p, q). Let A be its adjacency matrix
and L be its Laplacian, with nodes sorted by community id. What is E[A]? What is E[L]?

2. (4 points) What are the top three eigenvectors and eigenvalues of E[A]? What are the bottom
three eigenvectors and eigenvalues of E[L]? Note: the eigendecompositions of E[A] and E[L]
are not unique. Just describe one valid set of eigenvectors.

3. (3 points) Consider computing ~vn−1 and ~vn−2, the second and third smallest eigenvectors of
L. Then represent node i with the embedding ~xi = [~vn−1(i), ~vn−2(i)]. Partition the nodes
by applying k-means clustering to this embedded data set. Assume that you can find the
optimal clustering efficiently. If A,L were exactly equal to their expectations, describe how
this method would perform in recovering the communities X,Y, and Z. Note: You don’t
need to actually implement the method to answer this question. Just describe how it should
work in theory.

4. Bonus: (4 points) Generate a 900 node graph from Gn,3(p, q) with p = .1 and q = .02 and
partition it with the above spectral clustering algorithm applied to L. Plot the adjacency
matrix A, the spectral embedding (i.e., xi = [~vn−1(i), ~vn−2(i)] for all i), and the output of
the k-means algorithm. How well does the algorithm perform?
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