COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2019. Lecture 9

- Problem Set 2 was released on 9/28. Due Friday 10/11.
- Problem Set 1 should be graded by the end of this week.
- Midterm on Thursday 10/17. Will cover material through this week, but not material next week (10/8 and 10/10).
- This Thursday, will have a MAP (Midterm Assessment Process).
 - Someone from the Center for Teaching & Learning will collect feedback from you during the first 20 minutes of class.
 - Will be summarized and relayed to me anonymously, so I can make any adjustments and incorporate suggestions to help you learn the material better.

Last Class: The Frequent Elements Problem

- Given a stream of items x_1, \ldots, x_n and a parameter k, identify all elements that appear at least n/k times in the stream.
- Deterministic algorithms: Boyer-Moore majority algorithm and Misra-Gries summaries.
- Randomized algorithm: Count-Min sketch
- Analysis via Markov's inequality and repetition. 'Min trick' similar to median trick.

This Class: Randomized dimensionality reduction.

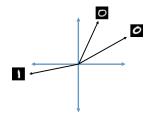
- The extremely powerful Johnson-Lindenstrauss Lemma and random projection.
- Linear algebra warm up.

'Big Data' means not just many data points, but many measurements per data point. I.e., very high dimensional data.

- Twitter has 321 active monthly users. Records (tens of) thousands of measurements per user: who they follow, who follows them, when they last visited the site, timestamps for specific interactions, how many tweets they have sent, the text of those tweets, etc...
- A 3 minute Youtube clip with a resolution of 500 x 500 pixels at 15 frames/second with 3 color channels is a recording of \geq 2 billion pixel values. Even a 500 x 500 pixel color image has 750,000 pixel values.
- The human genome contains 3 billion+ base pairs. Genetic datasets often contain information on 100s of thousands+ mutations and genetic markers.

In data analysis and machine learning, data points with many attributes are often stored, processed, and interpreted as high dimensional vectors, with real valued entries.

ATAGCCGTAGT > x = [1 2 1 3 4 4 3 2 1 3 4]

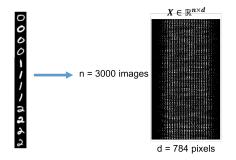


Similarities/distance between vectors (e.g., $\langle x, y \rangle$, $||x - y||_2$) have meaning for underlying datapoints.

Data points are interpreted as high dimensional vectors, with real valued entries. Dataset is interpreted as a matrix.

Data Points: $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$

Data Set: $X \in \mathbb{R}^{n \times d}$ with *i*th row equal to x_i .

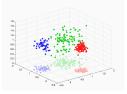


Many data points $n \implies$ tall. Many dimensions $d \implies$ wide.

Dimensionality Reduction: Compress data points so that they lie in many fewer dimensions.

$$x_1, x_2, \ldots, x_n \in \mathbb{R}^d \to \tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_n \in \mathbb{R}^{d'} \to \text{ for } d' \ll d.$$

'Lossy compression' that still preserves important information about the relationships between x_1, \ldots, x_n .



Generally will not consider directly how well \tilde{x}_i approximates x_i .

Dimensionality reduction is a ubiquitous technique in data science.

- Principal component analysis
- Latent semantic analysis (LSA)

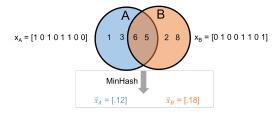
- Linear discriminant analysis
- Autoencoders

Compressing data makes it more efficient to work with. May also remove extraneous information/noise.

Low Distortion Embedding: Given $x_1, \ldots, x_n \in \mathbb{R}^d$, distance function D, and error parameter $\epsilon \ge 0$, find $\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^{d'}$ (where $d' \ll d$) and distance function \tilde{D} such that for all $i, j \in [n]$:

$$(1-\epsilon)D(x_i,x_j) \leq \tilde{D}(\tilde{x}_i,\tilde{x}_j) \leq (1+\epsilon)D(x_i,x_j)$$

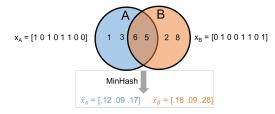
Have already seen one example in class: MinHash



Low Distortion Embedding: Given $x_1, \ldots, x_n \in \mathbb{R}^d$, distance function D, and error parameter $\epsilon \ge 0$, find $\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^{d'}$ (where $d' \ll d$) and distance function \tilde{D} such that for all $i, j \in [n]$:

$$(1-\epsilon)D(x_i,x_j) \leq \tilde{D}(\tilde{x}_i,\tilde{x}_j) \leq (1+\epsilon)D(x_i,x_j)$$

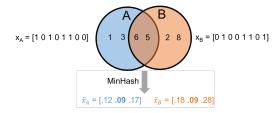
Have already seen one example in class: MinHash



Low Distortion Embedding: Given $x_1, \ldots, x_n \in \mathbb{R}^d$, distance function D, and error parameter $\epsilon \ge 0$, find $\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^{d'}$ (where $d' \ll d$) and distance function \tilde{D} such that for all $i, j \in [n]$:

$$(1-\epsilon)D(x_i,x_j) \leq \tilde{D}(\tilde{x}_i,\tilde{x}_j) \leq (1+\epsilon)D(x_i,x_j)$$

Have already seen one example in class: MinHash



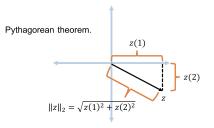
With large enough signature size r, $\frac{\# \text{ matching entries in } \tilde{x}_A, \tilde{x}_B}{r} \approx J(x_A, x_B)$.

• Reduce dimension from d = |U| to r. Note: here $J(x_A, x_B)$ is a similarity rather than a distance, so not quire a low distortion embedding. But closely related.

Low Distortion Embedding for Euclidean Space: Given $x_1, \ldots, x_n \in \mathbb{R}^d$ and error parameter $\epsilon \ge 0$, find $\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^{d'}$ (where $d' \ll d$) such that for all $i, j \in [n]$:

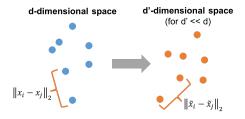
$$(1-\epsilon)||x_i-x_j||_2 \le ||\tilde{x}_i-\tilde{x}_j||_2 \le (1+\epsilon)||x_i-x_j||_2$$

Recall that for $z \in \mathbb{R}^m$, $||z||_2 = \sqrt{\sum_{i=1}^m z(i)^2}$.



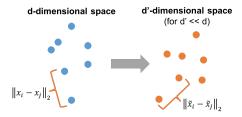
Low Distortion Embedding for Euclidean Space: Given $x_1, \ldots, x_n \in \mathbb{R}^d$ and error parameter $\epsilon \ge 0$, find $\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^{d'}$ (where $d' \ll d$) such that for all $i, j \in [n]$:

$$(1-\epsilon)||x_i - x_j||_2 \le ||\tilde{x}_i - \tilde{x}_j||_2 \le (1+\epsilon)||x_i - x_j||_2$$



Low Distortion Embedding for Euclidean Space: Given $x_1, \ldots, x_n \in \mathbb{R}^d$ and error parameter $\epsilon \ge 0$, find $\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^{d'}$ (where $d' \ll d$) such that for all $i, j \in [n]$:

$$(1-\epsilon)||x_i - x_j||_2 \le ||\tilde{x}_i - \tilde{x}_j||_2 \le (1+\epsilon)||x_i - x_j||_2$$



Can use $\tilde{x}_1, \ldots, \tilde{x}_n$ in place of x_1, \ldots, x_n in many applications: clustering, SVM, near neighbor search, etc.

A very easy case: Assume that x_1, \ldots, x_n all lie on the 1st-axis in \mathbb{R}^d .

Set d' = 1 and $\tilde{x}_i = x_i(1)$ (i.e., \tilde{x}_i is just a single number.).

• For all i, j:

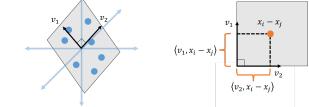
$$\|\tilde{x}_i - \tilde{x}_j\|_2 = \sqrt{[x_i(1) - x_j(1)]^2} = |x_i(1) - x_j(1)| = \|x_i - x_j\|_2$$

• An embedding with no distortion from any d into d' = 1.

An easy case: Assume that x_1, \ldots, x_n lie in any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

EMBEDDING WITH ASSUMPTIONS

An easy case: Assume that x_1, \ldots, x_n lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .



- Let $v_1, v_2, \ldots v_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.
- For all *i*, *j*, we have $x_i x_j \in \mathcal{V}$ and (a good exercise to show)

$$\|x_i - x_j\|_2 = \sqrt{\sum_{\ell=1}^k \langle v_\ell, x_i - x_j \rangle^2} = \|\mathbf{V}^T (x_i - x_j)\|_2$$

An easy case: Assume that x_1, \ldots, x_n lie in any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

- Let $v_1, v_2, \ldots v_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.
- For all *i*, *j*, we have $x_i x_j \in \mathcal{V}$ and (a good exercise to show)

$$\|x_i - x_j\|_2 = \sqrt{\sum_{\ell=1}^k \langle v_\ell, x_i - x_j \rangle^2} = \|\mathbf{V}^T (x_i - x_j)\|_2.$$

• If we set $\tilde{x}_i \in \mathbb{R}^k$ to $\tilde{x}_i = \mathbf{V}^T x_i$ we have:

$$\|\tilde{x}_i - \tilde{x}_j\|_2 = \|\mathbf{V}^T x_i - \mathbf{V}^T x_j\|_2 = \|\mathbf{V}^T (x_i - x_j)\|_2 = \|x_i - x_j\|_2.$$

- An embedding with no distortion from any d into d' = k.
- · $\mathbf{V}^{\mathsf{T}}: \mathbb{R}^d \to \mathbb{R}^k$ is a linear map giving our dimension reduction.

What about when we don't make any assumptions on x_1, \ldots, x_n . I.e., they can be scattered arbitrarily around *d*-dimensional space?

- Can we find a no-distortion embedding into $d' \ll d$ dimensions? No! Require d' = d.
- Can we find an ϵ -distortion embedding into $d' \ll d$ dimensions for $\epsilon > 0$? Yes! Always, with d' depending on ϵ .

For all i, j: $(1 - \epsilon) \|x_i - x_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|x_i - x_j\|_2$.

Johnson-Lindenstrauss Lemma: For any set of points $x_1, \ldots, x_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $\mathbf{\Pi} : \mathbb{R}^d \to \mathbb{R}^{d'}$ such that $d' = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = \mathbf{\Pi} x_i$:

For all $i, j: (1 - \epsilon) \|x_i - x_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|x_i - x_j\|_2$.

Further, if Π has each entry chosen i.i.d. as $\frac{1}{\sqrt{d'}} \cdot \mathcal{N}(0, 1)$, it satisfies the guarantee with high probability.

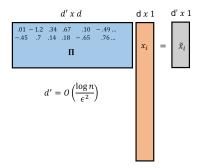
For d = 1 trillion, $\epsilon = .05$, and n = 100000, $d' \approx 6600$.

Very surprising! Powerful result with a simple (naive) construction: applying a random linear transformation to a set of points preserves the distances between all those points with high probability.

RANDOM PROJECTION

For any $x_1, \ldots x_n$, and $\mathbf{\Pi} \in \mathbb{R}^{d \times d'}$ chosen with each entry chosen i.i.d. as $\frac{1}{\sqrt{d'}} \cdot \mathcal{N}(0, 1)$, with high probability, letting $\tilde{x}_i = \mathbf{\Pi} x_i$:

For all i, j: $(1 - \epsilon) \|x_i - x_j\|_2 \le \|\Pi(x_i - x_j)\|_2 \le (1 + \epsilon) \|x_i - x_j\|_2$.



- **П** is known as a random projection.
- Data oblivious transformation. Stark contrast to methods like PCA.

Algorithmic Considerations:

- Many alternative constructions: ± 1 entries, sparse (most entries 0), structured, etc. \implies more efficient computation of $\tilde{x}_i = \mathbf{\Pi} x_i$.
- Data oblivious property means that once **Π** is chosen,
 *x*₁,...,*x*_n can be computed in a stream using little memory
 For *i* = 1,..., n
 - $\tilde{x}_i := \mathbf{\Pi} x_i$.
 - Memory needed is $O(d + n \cdot d')$ vs. O(nd) to store all the data.
- Compression can also be easily performed in parallel on different servers.
- When new data points are added, can be easily compressed, without updating existing points.