
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Fall 2019.
Lecture 9

0

logistics

• Problem Set 2 was released on 9/28. Due Friday 10/11.
• Problem Set 1 should be graded by the end of this week.
• Midterm on Thursday 10/17. Will cover material through this
week, but not material next week (10/8 and 10/10).

• This Thursday, will have a MAP (Midterm Assessment
Process).
• Someone from the Center for Teaching & Learning will collect
feedback from you during the first 20 minutes of class.

• Will be summarized and relayed to me anonymously, so I can
make any adjustments and incorporate suggestions to help you
learn the material better.

1

summary

Last Class: The Frequent Elements Problem

• Given a stream of items x1, . . . , xn and a parameter k, identify
all elements that appear at least n/k times in the stream.

• Deterministic algorithms: Boyer-Moore majority algorithm
and Misra-Gries summaries.

• Randomized algorithm: Count-Min sketch
• Analysis via Markov’s inequality and repetition. ‘Min trick’
similar to median trick.

This Class: Randomized dimensionality reduction.

• The extremely powerful Johnson-Lindenstrauss Lemma and
random projection.

• Linear algebra warm up.
2

high dimensional data

‘Big Data’ means not just many data points, but many measurements
per data point. I.e., very high dimensional data.

• Twitter has 321 active monthly users. Records (tens of) thousands
of measurements per user: who they follow, who follows them,
when they last visited the site, timestamps for specific
interactions, how many tweets they have sent, the text of those
tweets, etc...

• A 3 minute Youtube clip with a resolution of 500 x 500 pixels at 15
frames/second with 3 color channels is a recording of ≥ 2 billion
pixel values. Even a 500 x 500 pixel color image has 750, 000 pixel
values.

• The human genome contains 3 billion+ base pairs. Genetic
datasets often contain information on 100s of thousands+
mutations and genetic markers.

3

datasets as vectors and matrices

In data analysis and machine learning, data points with many
attributes are often stored, processed, and interpreted as high
dimensional vectors, with real valued entries.

Similarities/distance between
vectors (e.g., ⟨x, y⟩, ∥x− y∥2)
have meaning for underlying
datapoints.

4

datasets as vectors and matrices

Data points are interpreted as high dimensional vectors, with
real valued entries. Dataset is interpreted as a matrix.

Data Points: x1, x2, . . . , xn ∈ Rd

Data Set: X ∈ Rn×d with ith row equal to xi.

Many data points n =⇒ tall. Many dimensions d =⇒ wide. 5

dimensionality reduction

Dimensionality Reduction: Compress data points so that they lie in
many fewer dimensions.

x1, x2, . . . , xn ∈ Rd → x̃1, x̃2, . . . , x̃n ∈ Rd′ → for d′ ≪ d.

‘Lossy compression’ that still preserves important information about
the relationships between x1, . . . , xn.

Generally will not consider directly how well x̃i approximates xi.
6

dimensionality reduction

Dimensionality reduction is a ubiquitous technique in data
science.

• Principal component analysis
• Latent semantic analysis (LSA)

• Linear discriminant analysis
• Autoencoders

Compressing data makes it more efficient to work with. May
also remove extraneous information/noise.

7

low distortion embedding

Low Distortion Embedding: Given x1, . . . , xn ∈ Rd, distance function
D, and error parameter ϵ ≥ 0, find x̃1, . . . x̃n ∈ Rd′ (where d′ ≪ d) and
distance function D̃ such that for all i, j ∈ [n]:

(1− ϵ)D(xi, xj) ≤ D̃(x̃i, x̃j) ≤ (1+ ϵ)D(xi, xj)

Have already seen one example in class: MinHash

With large enough signature size r, # matching entries in x̃A,x̃B
r ≈ J(xA, xB).

• Reduce dimension from d = |U| to r. Note: here J(xA, xB) is a
similarity rather than a distance, so not quire a low distortion
embedding. But closely related.

8

low distortion embedding

Low Distortion Embedding: Given x1, . . . , xn ∈ Rd, distance function
D, and error parameter ϵ ≥ 0, find x̃1, . . . x̃n ∈ Rd′ (where d′ ≪ d) and
distance function D̃ such that for all i, j ∈ [n]:

(1− ϵ)D(xi, xj) ≤ D̃(x̃i, x̃j) ≤ (1+ ϵ)D(xi, xj)

Have already seen one example in class: MinHash

With large enough signature size r, # matching entries in x̃A,x̃B
r ≈ J(xA, xB).

• Reduce dimension from d = |U| to r. Note: here J(xA, xB) is a
similarity rather than a distance, so not quire a low distortion
embedding. But closely related.

8

low distortion embedding

Low Distortion Embedding: Given x1, . . . , xn ∈ Rd, distance function
D, and error parameter ϵ ≥ 0, find x̃1, . . . x̃n ∈ Rd′ (where d′ ≪ d) and
distance function D̃ such that for all i, j ∈ [n]:

(1− ϵ)D(xi, xj) ≤ D̃(x̃i, x̃j) ≤ (1+ ϵ)D(xi, xj)

Have already seen one example in class: MinHash

With large enough signature size r, # matching entries in x̃A,x̃B
r ≈ J(xA, xB).

• Reduce dimension from d = |U| to r. Note: here J(xA, xB) is a
similarity rather than a distance, so not quire a low distortion
embedding. But closely related. 8

embeddings for euclidean space

Low Distortion Embedding for Euclidean Space: Given
x1, . . . , xn ∈ Rd and error parameter ϵ ≥ 0, find x̃1, . . . x̃n ∈ Rd′

(where d′ ≪ d) such that for all i, j ∈ [n]:

(1− ϵ)∥xi − xj∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥xi − xj∥2

Recall that for z ∈ Rm, ∥z∥2 =
√∑m

i=1 z(i)2.

9

embeddings for euclidean space

Low Distortion Embedding for Euclidean Space: Given
x1, . . . , xn ∈ Rd and error parameter ϵ ≥ 0, find x̃1, . . . x̃n ∈ Rd′

(where d′ ≪ d) such that for all i, j ∈ [n]:

(1− ϵ)∥xi − xj∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥xi − xj∥2

Can use x̃1, . . . , x̃n in place of x1, . . . , xn in many applications:
clustering, SVM, near neighbor search, etc.

10

embeddings for euclidean space

Low Distortion Embedding for Euclidean Space: Given
x1, . . . , xn ∈ Rd and error parameter ϵ ≥ 0, find x̃1, . . . x̃n ∈ Rd′

(where d′ ≪ d) such that for all i, j ∈ [n]:

(1− ϵ)∥xi − xj∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥xi − xj∥2

Can use x̃1, . . . , x̃n in place of x1, . . . , xn in many applications:
clustering, SVM, near neighbor search, etc.

10

embedding with assumptions

A very easy case: Assume that x1, . . . , xn all lie on the 1st-axis in
Rd.

Set d′ = 1 and x̃i = xi(1) (i.e., x̃i is just a single number.).

• For all i, j:

∥x̃i − x̃j∥2 =
√

[xi(1)− xj(1)]2 = |xi(1)− xj(1)| = ∥xi − xj∥2.

• An embedding with no distortion from any d into d′ = 1.
11

embedding with assumptions

An easy case: Assume that x1, . . . , xn lie in any k-dimensional
subspace V of Rd.

• Let v1, v2, . . . vk be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns.

• For all i, j, we have xi − xj ∈ V and (a good exercise to show)

∥xi − xj∥2 =

√√√√ k∑
ℓ=1

⟨vℓ, xi − xj⟩2

= ∥VT(xi − xj)∥2.

12

embedding with assumptions

An easy case: Assume that x1, . . . , xn lie in any k-dimensional
subspace V of Rd.

• Let v1, v2, . . . vk be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns.

• For all i, j, we have xi − xj ∈ V and (a good exercise to show)

∥xi − xj∥2 =

√√√√ k∑
ℓ=1

⟨vℓ, xi − xj⟩2 = ∥VT(xi − xj)∥2.

12

embedding with assumptions

An easy case: Assume that x1, . . . , xn lie in any k-dimensional
subspace V of Rd.

• Let v1, v2, . . . vk be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns.

• For all i, j, we have xi − xj ∈ V and (a good exercise to show)

∥xi − xj∥2 =

√√√√ k∑
ℓ=1

⟨vℓ, xi − xj⟩2 = ∥VT(xi − xj)∥2.

• If we set x̃i ∈ Rk to x̃i = VTxi we have:

∥x̃i − x̃j∥2 = ∥VTxi − VTxj∥2 = ∥VT(xi − xj)∥2 = ∥xi − xj∥2.

• An embedding with no distortion from any d into d′ = k.
• VT : Rd → Rk is a linear map giving our dimension reduction. 13

embedding with no assumptions

What about when we don’t make any assumptions on
x1, . . . , xn. I.e., they can be scattered arbitrarily around
d-dimensional space?

• Can we find a no-distortion embedding into d′ ≪ d
dimensions? No! Require d′ = d.

• Can we find an ϵ-distortion embedding into d′ ≪ d
dimensions for ϵ > 0? Yes! Always, with d′ depending on ϵ.

For all i, j : (1− ϵ)∥xi − xj∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥xi − xj∥2.

14

the johnson-lindenstrauss lemma

Johnson-Lindenstrauss Lemma: For any set of points
x1, . . . , xn ∈ Rd and ϵ > 0 there exists a linear map
Π : Rd → Rd′ such that d′ = O

(
log n
ϵ2

)
and letting x̃i = Πxi:

For all i, j : (1− ϵ)∥xi − xj∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥xi − xj∥2.

Further, if Π has each entry chosen i.i.d. as 1√
d′

· N (0, 1),
it satisfies the guarantee with high probability.

For d = 1 trillion, ϵ = .05, and n = 100000, d′ ≈ 6600.

Very surprising! Powerful result with a simple (naive)
construction: applying a random linear transformation to a set
of points preserves the distances between all those points
with high probability. 15

random projection

For any x1, . . . xn, and Π ∈ Rd×d′ chosen with each entry chosen i.i.d.
as 1√

d′ · N (0, 1), with high probability, letting x̃i = Πxi:

For all i, j : (1− ϵ)∥xi − xj∥2 ≤ ∥Π(xi − xj)∥2 ≤ (1+ ϵ)∥xi − xj∥2.

• Π is known as a random projection.
• Data oblivious transformation. Stark contrast to methods like PCA.

16

random projection

Algorithmic Considerations:

• Many alternative constructions: ±1 entries, sparse (most
entries 0), structured, etc. =⇒ more efficient computation
of x̃i = Πxi.

• Data oblivious property means that once Π is chosen,
x̃1, . . . , x̃n can be computed in a stream using little memory
• For i = 1, . . . ,n
• x̃i := Πxi.

• Memory needed is O(d+ n · d′) vs. O(nd) to store all the data.
• Compression can also be easily performed in parallel on
different servers.

• When new data points are added, can be easily compressed,
without updating existing points.

17

