COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2019. Lecture 8

- Problem Set 1 was due this morning in Gradescope.
- Problem Set 2 will be released tomorrow and due 10/10.

Last Class: Finished up MinHash and LSH.

- Application to fast similarity search.
- False positive and negative tuning with length *r* hash signatures and *t* hash table repetitions (s-curves).
- Examples of other locality sensitive hash functions (SimHash).

This Class:

- The Frequent Elements (heavy-hitters) problem in data streams.
- Misra-Gries summaries.
- Count-min sketch.

Next Time: Random compression methods for high dimensional vectors. The Johnson-Lindenstrauss lemma.

• Building on the idea of SimHash.

After That: Spectral Methods

- PCA, low-rank approximation, and the singular value decomposition.
- · Spectral clustering and spectral graph theory.

Will use a lot of linear algebra. May be helpful to refresh.

- Vector dot product, addition, length. Matrix vector multiplication.
- · Linear independence, column span, orthogonal bases, rank.
- Eigendecomposition.

HASHING FOR DUPLICATE DETECTION

	Hash Table	Bloom Filters	MinHash Similarity Search	Distinct Elements
Goal	Check if x is a duplicate of any y in database and return y.	Check if x is a duplicate of y in database.	Check if x is a duplicate of any y in database and return y.	Count # of items, excluding duplicates.
Space	O(n) items	O(n) bits	$O(n \cdot t)$ items (when t tables used)	$O\left(\frac{\log\log n}{\epsilon^2}\right)$
Query Time	0(1)	0(1)	Potentially $o(n)$	NA
Approximate Duplicates?	X	×	~	X

All different variants of detecting duplicates/finding matches in large datasets. An important problem in many contexts!

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of *n* items x_1, \ldots, x_n (with possible duplicates). Return any item that appears at least $\frac{n}{k}$ times. E.g., for n = 9, k = 3:

x ₁	x ₂	X ₃	x ₄	x ₅	x ₆	х ₇	x ₈	x ₉
5	12	3	3	4	5	5	10	3

- What is the maximum number of items that must be returned? At most k items with frequency $\geq \frac{n}{k}$.
- Think of k = 100. Want items appearing $\geq 1\%$ of the time.
- Easy with O(n) space store the count for each item and return the one that appears $\geq n/k$ times.
- Can we do it with less space? I.e., without storing all *n* items?
- Similar challenge as with the distinct elements problem.

Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).
- 'Iceberg queries' for all items in a database with frequency above some threshold.

Generally want very fast detection, without having to scan through database/logs. I.e., want to maintain a running list of frequent items that appear in a stream. **Association rule learning:** A very common task in data mining is to identify common associations between different events.

- Identified via frequent itemset counting. Find all sets of *k* items that appear many times in the same basket.
- Frequency of an itemset is known as its support.
- A single basket includes many different itemsets, and with many different baskets an efficient approach is critical. E.g., baskets are Twitter users and itemsets are subsets of who they follow.

Majority: Consider a stream of *n* items x_1, \ldots, x_n , where a single item appears a majority of the time. Return this item.

x ₁	x ₂	X ₃	x ₄	X 5	x ₆	x 7	x ₈	x ₉	x ₁₀
5	12	3	5	4	5	5	10	5	5

• Basically *k*-Frequent items for k = 2 (and assume a single item has a strict majority.)

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

- Initialize count c := 0, majority element $m := \perp$
- For i = 1, ..., n
 - If c = 0, set $m := x_i$ and c := 1.
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

- Initialize count c := 0, majority element $m := \perp$
- For i = 1, ..., n
 - If c = 0, set $m := x_i$ and c := 1.
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

- Initialize count c := 0, majority element $m := \bot$
- For *i* = 1, . . . , *n*
 - If c = 0, set $m := x_i$ and c := 1.
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

- Initialize count c := 0, majority element $m := \perp$
- For i = 1, ..., n
 - If c = 0, set $m := x_i$ and c := 1.
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

- Initialize count c := 0, majority element $m := \bot$
- For *i* = 1, . . . , *n*
 - If c = 0, set $m := x_i$ and c := 1.
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

- Initialize count c := 0, majority element $m := \perp$
- For i = 1, ..., n
 - If c = 0, set $m := x_i$ and c := 1.
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

- Initialize count c := 0, majority element $m := \perp$
- For i = 1, ..., n
 - If c = 0, set $m := x_i$ and c := 1.
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

- Initialize count c := 0, majority element $m := \bot$
- For *i* = 1, . . . , *n*
 - If c = 0, set $m := x_i$ and c := 1.
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

- Initialize count c := 0, majority element $m := \bot$
- For *i* = 1, . . . , *n*
 - If c = 0, set $m := x_i$ and c := 1.
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

- Initialize count c := 0, majority element $m := \bot$
- For *i* = 1, . . . , *n*
 - If c = 0, set $m := x_i$ and c := 1.
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

- Initialize count c := 0, majority element $m := \bot$
- For *i* = 1, . . . , *n*
 - If c = 0, set $m := x_i$ and c := 1.
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

- Initialize count c := 0, majority element $m := \perp$
- For i = 1, ..., n
 - If c = 0, set $m := x_i$ and c := 1.
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

Claim: The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.

Proof: Let *M* be the true majority element. Let s = c when m = M and s = -c otherwise (s is a 'helper' variable).

- Initialize count c := 0, majority element $m := \perp$
- For i = 1, ..., n
 - If c = 0, set $m := x_i$ and c := 1.
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

Claim: The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.

Proof: Let *M* be the true majority element. Let s = c when m = M and s = -c otherwise (s is a 'helper' variable).

- Initialize count c := 0, majority element $m := \perp$
- For i = 1, ..., n
 - If c = 0, set $m := x_i$ and c := 1.
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

Claim: The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.

Proof: Let *M* be the true majority element. Let s = c when m = M and s = -c otherwise (s is a 'helper' variable).

- Initialize count c := 0, majority element $m := \perp$
- For i = 1, ..., n
 - If c = 0, set $m := x_i$ and c := 1.
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

Claim: The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.

Proof: Let *M* be the true majority element. Let s = c when m = M and s = -c otherwise (s is a 'helper' variable).

• *s* is incremented each time *M* appears. So it is incremented more than it is decremented (since *M* appears a majority of times) and ends at a positive value. \implies algorithm ends with m = M.

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of *n* items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

Boyer-Moore Voting Algorithm:

- Initialize count c := 0, majority element $m := \perp$
- For i = 1, ..., n
 - If c = 0, set $m := x_i$
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of *n* items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$
- For i = 1, ..., n
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

$c_1{=}0,\,m_1{=}{\perp}$

 $c_2{=}0,\,m_1{=}{\perp}$

$$c_3$$
=0, m_1 =⊥

x ₁	x ₂	X ₃	x ₄	x 5	x ₆	x ₇	x ₈	x ₉
5	12	3	3	4	5	5	10	3

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

 $c_2{=}0,\,m_1{=}{\perp}$

$$c_3$$
=0, m_1 =⊥

x 1	x ₂	X ₃	x ₄	x 5	x ₆	x ₇	x ₈	x ₉
5	12	3	3	4	5	5	10	3

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

x1	x ₂	X ₃	x ₄	x 5	x ₆	x ₇	x ₈	x ₉
5	12	3	3	4	5	5	10	3

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

x ₁	x ₂	X ₃	x ₄	x ₅	x ₆	x ₇	x ₈	x ₉
5	12	3	3	4	5	5	10	3

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

x ₁	x ₂	X ₃	x ₄	x 5	x ₆	x ₇	x ₈	x ₉
5	12	3	3	4	5	5	10	3

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

x ₁	x ₂	x ₃	x ₄	x 5	x ₆	x ₇	x ₈	x ₉
5	12	3	3	4	5	5	10	3

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - If $m_i = x_i$ for some j, set $c_i := c_i + 1$.
 - Else let $t = \arg\min c_i$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_i := c_i 1$ for all *j*.

3	
3	•

 $igodol \square$

x ₁	x ₂	X ₃	x ₄	x ₅	x ₆	x 7	x ₈	x ₉
5	12	3	3	4	5	5	10	3

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

x ₁	x ₂	x ₃	x ₄	x 5	x ₆	x 7	x ₈	х ₉
5	12	3	3	4	5	5	10	3

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

x ₁	x ₂	X ₃	x ₄	x ₅	x ₆	х ₇	x ₈	x ₉
5	12	3	3	4	5	5	10	3

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - If $m_i = x_i$ for some j, set $c_i := c_i + 1$.
 - Else let $t = \arg\min c_i$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_i := c_i 1$ for all *j*.

x ₁	x ₂	X ₃	x ₄	X ₅	x ₆	х 7	x ₈	x ₉
5	12	3	3	4	5	5	10	3

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

x1	x ₂	X ₃	x ₄	x 5	x ₆	x ₇	x ₈	x ₉
5	12	3	3	4	5	5	10	3

Claim: At the end of the stream, all items with frequency $\geq \frac{n}{k}$ are stored.

Claim: At the end of the stream, the Misra-Gries algorithm stores k items, including all those with frequency $\geq \frac{n}{k}$.

Intuition:

- If there are exactly *k* items, each appearing exactly *n/k* times, all are stored (since we have *k* storage slots).
- If there are k/2 items each appearing $\ge n/k$ times, there are $\le n/2$ irrelevant items, being inserted into k/2 'free slots'.
- May cause $\frac{n/2}{k/2} = \frac{n}{k}$ decrement operations. Few enough that the heavy items (appearing n/k times each) are still stored.

Anything undesirable about the Misra-Gries output guarantee? May have false positives – infrequent items that are stored. **Issue:** Misra-Gries algorithm stores k items, including all with frequency $\geq n/k$. But may include infrequent items.

• In fact, no algorithm using o(n) space can output just the items with frequency $\ge n/k$. Hard to tell between an item with frequency n/k (should be output) and n/k - 1 (should not be output).

Issue: Misra-Gries algorithm stores k items, including all with frequency $\geq n/k$. But may include infrequent items.

• In fact, no algorithm using o(n) space can output just the items with frequency $\ge n/k$. Hard to tell between an item with frequency n/k (should be output) and n/k - 1 (should not be output).

 (ϵ, k) -Frequent Items Problem: Consider a stream of n items x_1, \ldots, x_n . Return a set F of items, including all items that appear at least $\frac{n}{k}$ times and only items that appear at least $(1 - \epsilon) \cdot \frac{n}{k}$ times.

• An example of relaxing to a 'promise problem': for items with frequencies in $[(1 - \epsilon) \cdot \frac{n}{k}, \frac{n}{k}]$ no output guarantee.

Misra-Gries Summary: (ϵ -error version)

- Let $r := \lceil k/\epsilon \rceil$
- Initialize counts $c_1, \ldots, c_r := 0$, elements $m_1, \ldots, m_r := \bot$.
- For $i = 1, \ldots, n$
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.
- Return any m_j with $c_j \ge (1 \epsilon) \cdot \frac{n}{k}$.

Claim: For all m_j with true frequency $f(m_j)$:

$$f(m_j) - \frac{\epsilon n}{k} \leq c_j \leq f(m_j).$$

Intuition: # items stored r is large, so relatively few decrements.

Implication: If $f(m_j) \ge \frac{n}{k}$, then $c_j \ge (1 - \epsilon) \cdot \frac{n}{k}$ so the item is returned. If $f(m_j) < (1 - \epsilon) \cdot \frac{n}{k}$, then $c_j < (1 - \epsilon) \cdot \frac{n}{k}$ so the item is not returned. **Upshot:** The (ϵ, k) -Frequent Items problem can be solved via the Misra-Gries approach.

- Space usage is $\lceil k/\epsilon \rceil$ counts $O\left(\frac{k \log n}{\epsilon}\right)$ bits and $\lceil k/\epsilon \rceil$ items.
- Deterministic approximation algorithm.

• A major advantage: easily distributed to processing on multiple servers.

$$\mathbf{x}_1$$
 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4 ... \mathbf{x}_n

random hash function h

• A major advantage: easily distributed to processing on multiple servers.

Will use $A[\mathbf{h}(x)]$ to estimate f(x), the frequency of x in the stream. I.e., $|\{x_i : x_i = x\}|$.

• A major advantage: easily distributed to processing on multiple servers. Build arrays A_1, \ldots, A_s separately and then just set $A := A_1 + \ldots + A_s$.

Will use $A[\mathbf{h}(x)]$ to estimate f(x), the frequency of x in the stream. I.e., $|\{x_i : x_i = x\}|$.

Use $A[\mathbf{h}(x)]$ to estimate f(x)

Claim 1: We always have $A[\mathbf{h}(x)] \ge f(x)$. Why?

- $A[\mathbf{h}(x)]$ counts the number of occurrences of any y with $\mathbf{h}(y) = \mathbf{h}(x)$, including x itself.
- $A[\mathbf{h}(x)] = f(x) + \sum_{y \neq x: \mathbf{h}(y) = \mathbf{h}(x)} f(y).$

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of count-min sketch array.

$$A[\mathbf{h}(x)] = f(x) + \sum_{\substack{y \neq x: \mathbf{h}(y) = \mathbf{h}(x)}} f(y) \quad .$$

Expected Error:

error in frequency estimate

$$\mathbb{E}\left[\sum_{y\neq x: h(y)=h(x)} f(y)\right] = \sum_{y\neq x} \Pr(h(y) = h(x)) \cdot f(y)$$
$$= \sum_{y\neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \le \frac{n}{m}$$

What is a bound on probability that the error is $\geq \frac{3n}{m}$?

Markov's inequality: $\Pr\left[\sum_{y \neq x: h(y) = h(x)} f(y) \ge \frac{3n}{m}\right] \le \frac{1}{3}$.

What property of h is required to show this bound? 2-universal.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of count-min sketch array.

Claim: For any x, with probability at least 2/3,

$$f(x) \leq A[\mathbf{h}(x)] \leq f(x) + \frac{\epsilon n}{k}.$$

To solve the (ϵ, k) -Frequent elements problem, set $m = \frac{6k}{\epsilon}$. How can we improve the success probability? Repetition.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of count-min sketch array.

Estimate f(x) with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (count-min sketch)

Estimate f(x) with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (count-min sketch)

Why min instead of median? The minimum estimate is always the most accurate since they are all overestimates of the true frequency!

COUNT-MIN SKETCH ANALYSIS

Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

• For every x and $i \in [t]$, we know that for $m = O(k/\epsilon)$, with probability $\geq 2/3$:

$$f(\mathbf{x}) \leq A_i[\mathbf{h}_i(\mathbf{x})] \leq f(\mathbf{x}) + \frac{\epsilon n}{k}.$$

- What is $\Pr[f(x \le \tilde{f}(x) \le f(x) + \frac{\epsilon n}{k}]? \quad 1 1/3^t.$
- To have a good estimate with probability $\geq 1 \delta$, set $t = \log(1/\delta)$.²²

Upshot: Count-min sketch lets us estimate the frequency of every item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1 - \delta$ in $O(\log(1/\delta) \cdot k/\epsilon)$ space.

- Accurate enough to solve the (ϵ, k) -Frequent elements problem.
- Actually identifying the frequent elements quickly requires a little bit of further work.

One approach: Store potential frequent elements as they come in. At step *i* remove any elements whose estimated frequency is below *i/k*. Store at most O(k) items at once and have all items with frequency $\ge n/k$ stored at the end of the stream.

Questions on Frequent Elements?