COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2019. Lecture 7

- Problem Set 1 is due Thursday in Gradescope.
- My office hours today are 1:15pm-2:15pm.

Lecture Pace: Piazza poll results for last class:

- 18%: too fast
- 48%: a bit too fast
- 26%: perfect
- 8%: (a bit) too slow

So will try to slow down a bit.

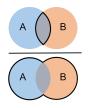
Last Class: Hashing for Jaccard Similarity

- MinHash for estimating the Jaccard similarity.
- Application to fast similarity search.
- Locality sensitive hashing (LSH).

This Class:

- $\cdot\,$ Finish up MinHash and LSH.
- The Frequent Elements (heavy-hitters) problem.
- Misra-Gries summaries.

Jaccard Similarity: $J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{\# \text{ shared elements}}{\# \text{ total elements}}$.



Two Common Use Cases:

- Near Neighbor Search: Have a database of n sets/bit strings and given a set A, want to find if it has high similarity to anything in the database. Naively O(n) time.
- All-pairs Similarity Search: Have *n* different sets/bit strings. Want to find all pairs with high similarity. Naively $O(n^2)$ time.

MINHASHING

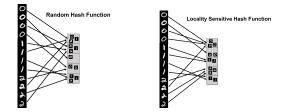
 $MinHash(A) = min_{a \in A} \mathbf{h}(a)$ where $\mathbf{h} : U \rightarrow [0, 1]$ is a random hash.

Locality Sensitivity: Pr(MinHash(A) = MinHash(B)) = J(A, B).

Represents a set with a single number that captures Jaccard similarity information!

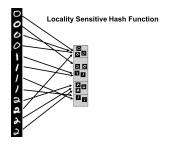
Given a collision free hash function $\mathbf{g}: [0,1] \rightarrow [m]$,

Pr[g(MinHash(A)) = g(MinHash(B))] = J(A, B).



What happens to $\Pr[g(MinHash(A)) = g(MinHash(B))]$ if g is not collision free? Collision probability will be larger than J(A, B).

When searching for similar items only search for matches that land in the same hash bucket.



- False Negative: A similar pair doesn't appear in the same bucket.
- False Positive: A dissimilar pair is hashed to the same bucket.

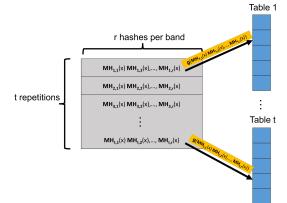
Need to balance a small probability of false negatives (a high hit rate) with a small probability of false positives (a small query time.)

Consider a pairwise independent random hash function $h: U \rightarrow [m]$. Is this locality sensitive?

$$Pr(\mathbf{h}(x) = \mathbf{h}(y)) = \frac{1}{m}$$
 for all $x, y \in U$. Not locality sensitive!

- Random hash functions (for load balancing, fast hash table look ups, bloom filters, distinct element counting, etc.) aim to evenly distribute elements across the hash range.
- Locality sensitive hash functions (for similarity search) aim to distribute elements in a way that reflects their similarities.

Balancing False Negatives/Positives with MinHash via repetition.



Create *t* hash tables. Each is indexed into not with a single MinHash value, but with *r* values, appended together. A length *r* signature:

 $MH_{i,1}(x), MH_{i,2}(x), \ldots, MH_{i,r}(x).$

For A, B with Jaccard similarity J(A, B) = s, probability their length r MinHash signatures collide:

 $\Pr([\mathsf{MH}_{i,1}(A), \dots, \mathsf{MH}_{i,r}(A)] = [\mathsf{MH}_{i,1}(B), \dots, \mathsf{MH}_{i,r}(B)]) = \mathsf{s}^r.$

Probability the signatures don't collide:

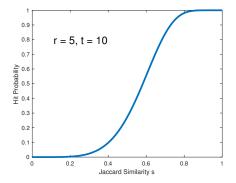
 $\Pr([\mathbf{MH}_{i,1}(A),...,\mathbf{MH}_{i,r}(A)] \neq [\mathbf{MH}_{i,1}(B),...,\mathbf{MH}_{i,r}(B)]) = 1 - s^{r}.$

Probability there is at least one collision in the *t* hash tables:

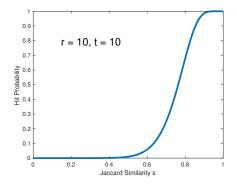
 $\Pr\left(\exists i: [\mathsf{MH}_{i,1}(A), \dots, \mathsf{MH}_{i,r}(A)] = [\mathsf{MH}_{i,1}(B), \dots, \mathsf{MH}_{i,r}(B)]\right) = 1 - (1 - s^r)^t.$

 $\mathbf{MH}_{i,j}$: $(i,j)^{th}$ independent instantiation of MinHash. t repetitions (i = 1, ..., t), each with r hash functions (j = 1, ..., r) to make a length r signature.

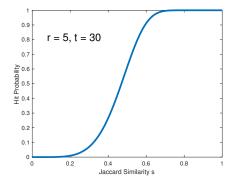
Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity J(x, y) = s match in at least one repetition is: $1 - (1 - s^r)^t$.



Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity J(x, y) = s match in at least one repetition is: $1 - (1 - s^r)^t$.



Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity J(x, y) = s match in at least one repetition is: $1 - (1 - s^r)^t$.



Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity J(x, y) = s match in at least one repetition is: $1 - (1 - s^r)^t$.



r and *t* are tuned depending on application. 'Threshold' when hit probability is 1/2 is $\approx (1/t)^{1/r}$. E.g., $\approx (1/30)^{1/5} = .51$ in this case.

S-CURVE EXAMPLE

For example: Consider a database with 10,000,000 audio clips. You are given a clip x and want to find any y in the database with $J(x, y) \ge .9$.

- There are 10 true matches in the database with $J(x, y) \ge .9$.
- There are 1000 near matches with $J(x, y) \in [.7, .9]$.

With signature length r = 25 and repetitions t = 50, hit probability for J(x, y) = s is $1 - (1 - s^{25})^{50}$.

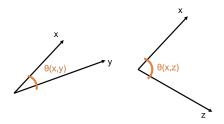
- Hit probability for $J(x, y) \ge .9$ is $\ge 1 (1 .9^{25})^{50} \approx .98$ and ≤ 1 .
- Hit probability for $J(x, y) \in [.7, .9]$ is $\le 1 (1 .9^{25})^{50} \approx .98$
- Hit probability for J(x,y) \leq .7 is \leq 1 (1 .7²⁵)⁵⁰ \approx .007

Expected Number of Items Scanned: (proportional to query time)

 $1 * 10 + .98 * 1000 + .007 * 9,998,990 \approx 80,000 \ll 10,000,000.$

Repetition and s-curve tuning can be used for search with any similarity metric, given a locality sensitive hash function for that metric.

• LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.

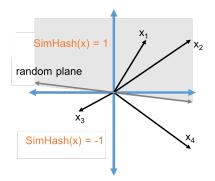


Cosine Similarity: $\cos(\theta(x, y)) = \frac{\langle x, y \rangle}{\|x\|_2 \cdot \|y\|_2}$.

• $\cos(\theta(x, y)) = 1$ when $\theta(x, y) = 0^{\circ}$ and $\cos(\theta(x, y)) = 0$ when $\theta(x, y) = 90^{\circ}$, and $\cos(\theta(x, y)) = -1$ when $\theta(x, y) = 180^{\circ}$

LSH FOR COSINE SIMILARITY

SimHash Algorithm: LSH for cosine similarity.

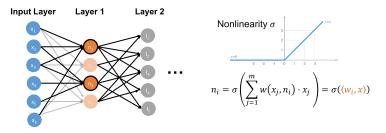


 $SimHash(x) = sign(\langle x, t \rangle)$ for a random vector t.

$$\Pr\left[SimHash(x) = SimHash(y)\right] = 1 - \frac{\theta(x,y)}{\pi} \approx \frac{\cos(\theta(x,y)) + 1}{2}.$$

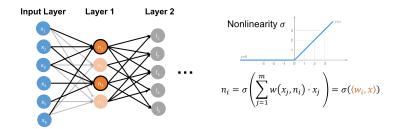
12

Many applications outside traditional similarity search. E.g., approximate neural net computation (Anshumali Shrivastava).



- Evaluating $\mathcal{N}(x)$ requires $|x| \cdot ||ayer 1| + ||ayer 1| \cdot ||ayer 2| + ... multiplications if fully connected.$
- Can be expensive, especially on constrained devices like cellphones, cameras, etc.
- For approximate evaluation, suffices to identify the neurons in each layer with high activation when *x* is presented.

HASHING FOR NEURAL NETWORKS



- Important neurons have high activation $\sigma(\langle w_i, x \rangle)$.
- Since σ is typically monotonic, this means large $\langle w_i, x \rangle$.
- $\cos(\theta(w_i, x)) = \frac{\langle w_i, x \rangle}{\|w_i\| \|x\|}$. Thus these neurons can be found very quickly using LSH for cosine similarity search.

HASHING FOR DUPLICATE DETECTION

	Bloom Filters	Hash Table	MinHash	Distinct Elements
Goal	Check if x is a duplicate of y in database.	Check if x is a duplicate of any y in database and return y.	Check if x is a duplicate of any y in database and return y.	Count # of items, excluding duplicates.
Approximate Duplicates?	×	×	~	×

All different variants of detecting duplicates/finding matches in large datasets. An important problem in many contexts!

MinHash(*A*) is a single number sketch, that can be used both to estimate the number of items in *A* and the Jaccard similarity between *A* and other sets.

Questions on MinHash and Locality Sensitive Hashing?