
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Fall 2019.
Lecture 7

0

logistics

• Problem Set 1 is due Thursday in Gradescope.
• My office hours today are 1:15pm-2:15pm.

Lecture Pace: Piazza poll results for last class:

• 18%: too fast
• 48%: a bit too fast
• 26%: perfect
• 8%: (a bit) too slow

So will try to slow down a bit.

1

summary

Last Class: Hashing for Jaccard Similarity

• MinHash for estimating the Jaccard similarity.
• Application to fast similarity search.
• Locality sensitive hashing (LSH).

This Class:

• Finish up MinHash and LSH.
• The Frequent Elements (heavy-hitters) problem.
• Misra-Gries summaries.

2

jaccard similarity

Jaccard Similarity: J(A,B) = |A∩B|
|A∪B| =

shared elements
total elements .

Two Common Use Cases:

• Near Neighbor Search: Have a database of n sets/bit strings
and given a set A, want to find if it has high similarity to
anything in the database. Naively O(n) time.

• All-pairs Similarity Search: Have n different sets/bit strings.
Want to find all pairs with high similarity. Naively O(n2) time.

3

minhashing

MinHash(A) = mina∈A h(a) where h : U→ [0, 1] is a random hash.

Locality Sensitivity: Pr(MinHash(A) = MinHash(B)) = J(A,B).

Represents a set with a single number that captures Jaccard
similarity information!

Given a collision free hash function g : [0, 1] → [m],

Pr [g(MinHash(A)) = g(MinHash(B))] = J(A,B).

What happens to Pr [g(MinHash(A)) = g(MinHash(B))] if g is not
collision free? Collision probability will be larger than J(A,B). 4

lsh for similarity search

When searching for similar items only search for matches that land
in the same hash bucket.

• False Negative: A similar pair doesn’t appear in the same bucket.
• False Positive: A dissimilar pair is hashed to the same bucket.

Need to balance a small probability of false negatives (a high hit
rate) with a small probability of false positives (a small query time.)

5

locality sensitive hashing

Consider a pairwise independent random hash function
h : U→ [m]. Is this locality sensitive?

Pr (h(x) = h(y)) = 1
m for all x, y ∈ U. Not locality sensitive!

• Random hash functions (for load balancing, fast hash table
look ups, bloom filters, distinct element counting, etc.) aim
to evenly distribute elements across the hash range.

• Locality sensitive hash functions (for similarity search) aim
to distribute elements in a way that reflects their similarities.

6

balancing hit rate and query time

Balancing False Negatives/Positives with MinHash via repetition.

Create t hash tables. Each is indexed into not with a single MinHash
value, but with r values, appended together. A length r signature:

MHi,1(x),MHi,2(x), . . . ,MHi,r(x).
7

signature collisions

For A,B with Jaccard similarity J(A,B) = s, probability their length r
MinHash signatures collide:

Pr
(
[MHi,1(A), . . . ,MHi,r(A)] = [MHi,1(B), . . . ,MHi,r(B)]

)
= sr.

Probability the signatures don’t collide:

Pr
(
[MHi,1(A), . . . ,MHi,r(A)] ̸= [MHi,1(B), . . . ,MHi,r(B)]

)
= 1− sr.

Probability there is at least one collision in the t hash tables:

Pr
(
∃i : [MHi,1(A), . . . ,MHi,r(A)] = [MHi,1(B), . . . ,MHi,r(B)]

)
= 1− (1− sr)t.

MHi,j : (i, j)th independent instantiation of MinHash. t repetitions (i = 1, . . . t),
each with r hash functions (j = 1, . . . r) to make a length r signature.

8

the s-curve

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x, y) = s match in at
least one repetition is: 1− (1− sr)t.

0 0.2 0.4 0.6 0.8 1

Jaccard Similarity s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
H

it
 P

ro
b
a
b
ili

ty

r = 5, t = 10

r and t are tuned depending on application. ‘Threshold’ when hit
probability is 1/2 is ≈ (1/t)1/r. E.g., ≈ (1/30)1/5 = .51 in this case.

9

the s-curve

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x, y) = s match in at
least one repetition is: 1− (1− sr)t.

0 0.2 0.4 0.6 0.8 1

Jaccard Similarity s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
H

it
 P

ro
b
a
b
ili

ty

r = 10, t = 10

r and t are tuned depending on application. ‘Threshold’ when hit
probability is 1/2 is ≈ (1/t)1/r. E.g., ≈ (1/30)1/5 = .51 in this case.

9

the s-curve

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x, y) = s match in at
least one repetition is: 1− (1− sr)t.

0 0.2 0.4 0.6 0.8 1

Jaccard Similarity s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
H

it
 P

ro
b
a
b
ili

ty

r = 5, t = 30

r and t are tuned depending on application. ‘Threshold’ when hit
probability is 1/2 is ≈ (1/t)1/r. E.g., ≈ (1/30)1/5 = .51 in this case.

9

the s-curve

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x, y) = s match in at
least one repetition is: 1− (1− sr)t.

0 0.2 0.4 0.6 0.8 1

Jaccard Similarity s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
H

it
 P

ro
b
a
b
ili

ty

r = 5, t = 30

r and t are tuned depending on application. ‘Threshold’ when hit
probability is 1/2 is ≈ (1/t)1/r. E.g., ≈ (1/30)1/5 = .51 in this case. 9

s-curve example

For example: Consider a database with 10, 000, 000 audio clips. You
are given a clip x and want to find any y in the database with
J(x, y) ≥ .9.

• There are 10 true matches in the database with J(x, y) ≥ .9.
• There are 1000 near matches with J(x, y) ∈ [.7, .9].

With signature length r = 25 and repetitions t = 50, hit probability
for J(x, y) = s is 1− (1− s25)50.

• Hit probability for J(x, y) ≥ .9 is ≥ 1− (1− .925)50 ≈ .98 and ≤ 1.
• Hit probability for J(x, y) ∈ [.7, .9] is ≤ 1− (1− .925)50 ≈ .98
• Hit probability for J(x, y) ≤ .7 is ≤ 1− (1− .725)50 ≈ .007

Expected Number of Items Scanned: (proportional to query time)

1 ∗ 10+ .98 ∗ 1000+ .007 ∗ 9, 998, 990 ≈ 80, 000≪ 10, 000, 000.
10

locality sensitive hashing

Repetition and s-curve tuning can be used for search with any
similarity metric, given a locality sensitive hash function for that
metric.
• LSH schemes exist for many similarity/distance measures:
hamming distance, cosine similarity, etc.

Cosine Similarity: cos(θ(x, y)) = ⟨x,y⟩
∥x∥2·∥y∥2 .

• cos(θ(x, y)) = 1 when θ(x, y) = 0◦ and cos(θ(x, y)) = 0 when
θ(x, y) = 90◦, and cos(θ(x, y)) = −1 when θ(x, y) = 180◦

11

lsh for cosine similarity

SimHash Algorithm: LSH for cosine similarity.

SimHash(x) = sign(⟨x, t⟩) for a random vector t.

Pr [SimHash(x) = SimHash(y)] = 1− θ(x, y)
π

≈ cos(θ(x, y)) + 1
2 .

12

hashing for neural networks

Many applications outside traditional similarity search. E.g.,
approximate neural net computation (Anshumali Shrivastava).

• Evaluating N (x) requires |x| · |layer 1|+ |layer 1| · |layer 2|+ . . .

multiplications if fully connected.
• Can be expensive, especially on constrained devices like
cellphones, cameras, etc.

• For approximate evaluation, suffices to identify the neurons in
each layer with high activation when x is presented. 13

hashing for neural networks

• Important neurons have high activation σ(⟨wi, x⟩).
• Since σ is typically monotonic, this means large ⟨wi, x⟩.
• cos(θ(wi, x)) = ⟨wi, x⟩

∥wi∥∥x∥
. Thus these neurons can be found

very quickly using LSH for cosine similarity search.

14

hashing for duplicate detection

All different variants of detecting duplicates/finding matches
in large datasets. An important problem in many contexts!

MinHash(A) is a single number sketch, that can be used both
to estimate the number of items in A and the Jaccard similarity
between A and other sets.

15

Questions on MinHash and Locality Sensitive Hashing?

16

