COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2019. Lecture 23

LOGISTICS

- · Problem Set 4 due Sunday 12/15 at 8pm.
- Exam prep materials posted under the 'Schedule' tab of the course page.
- SRTI survey is open until 12/22. Your feedback this semester has been very helpful to me, so please fill out the survey!
- https://owl.umass.edu/partners/ courseEvalSurvey/uma/

SUMMARY

Last Class:

- · Some counterintuitive properties of high dimensional space.
- · Connections to 'curse of dimensionality'.

Last Class:

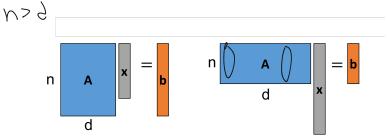
- · Some counterintuitive properties of high dimensional space.
- · Connections to 'curse of dimensionality'.

This Class:

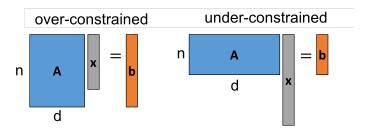
- · Compressed sensing and sparse recovery.
- Applications to sparse regression, frequent elements problem, sparse Fourier transform, efficient imaging, etc.

Consider matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{x} \in \mathbb{R}^d$. If you are given $\mathbf{b} = \mathbf{A}\mathbf{x}$, under what condition can you find \mathbf{x} ? When \mathbf{A} has full column rank – i.e., all columns are linearly independent.

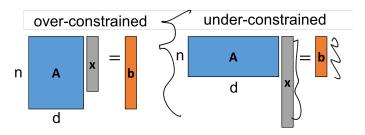
Consider matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{x} \in \mathbb{R}^d$. If you are given $\mathbf{b} = \mathbf{A}\mathbf{x}$, under what condition can you find \mathbf{x} ? When \mathbf{A} has full column rank – i.e., all columns are linearly independent.



Consider matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{x} \in \mathbb{R}^d$. If you are given $\mathbf{b} = \mathbf{A}\mathbf{x}$, under what condition can you find \mathbf{x} ? When \mathbf{A} has full column rank – i.e., all columns are linearly independent.

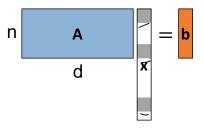


Consider matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{x} \in \mathbb{R}^d$. If you are given $\mathbf{b} = \mathbf{A}\mathbf{x}$, under what condition can you find \mathbf{x} ? When \mathbf{A} has full column rank – i.e., all columns are linearly independent.

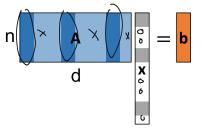


Compressed sensing: Under what assumptions we can still find \mathbf{x} when the number of 'measurements' n is smaller than the number of features d (i.e., when \mathbf{b} is a compression of \mathbf{x})?

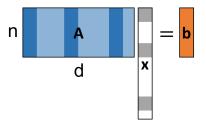
The most common assumption of compressed sensing is that \mathbf{x} is k-sparse, i.e., has at most $k \ll d$ nonzero entries.



The most common assumption of compressed sensing is that \mathbf{x} is k-sparse, i.e., has at most $k \ll d$ nonzero entries.

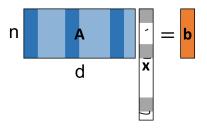


The most common assumption of compressed sensing is that \mathbf{x} is k-sparse, i.e., has at most $k \ll d$ nonzero entries.



These types of linear systems have lots of applications.

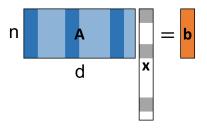
The most common assumption of compressed sensing is that \mathbf{x} is k-sparse, i.e., has at most $k \ll d$ nonzero entries.



These types of linear systems have lots of applications.

First: Under what condition can you find \mathbf{x} assuming knowledge that it is at most k-sparse?

The most common assumption of compressed sensing is that \mathbf{x} is k-sparse, i.e., has at most $k \ll d$ nonzero entries.



These types of linear systems have lots of applications.

First: Under what condition can you find **x** assuming knowledge that it is at most *k*-sparse? When every set of 2*k* columns in **A** is linearly independent – i.e., **A** has Kruskal rank 2*k*.

Sufficiency of Kruskal Rank 2k:

all sets of all columns are lin. in1.

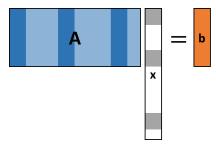
• We want to recover x from b = Ax, assuming x is k-sparse.

- We want to recover x from b = Ax, assuming x is k-sparse.
- Say there was a different k-sparse \mathbf{x}' with $\mathbf{A}\mathbf{x}' = \mathbf{b}$, making recovery impossible.

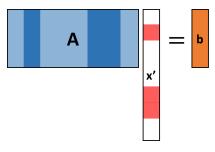
- We want to recover x from b = Ax, assuming x is k-sparse.
- Say there was a different k-sparse \mathbf{x}' with $\mathbf{A}\mathbf{x}' = \mathbf{b}$, making recovery impossible.

• Then
$$Ax - Ax' = A(x - x') = 0$$
.

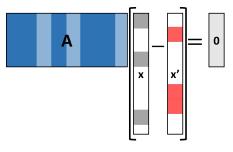
- We want to recover x from b = Ax, assuming x is k-sparse.
- Say there was a different k-sparse \mathbf{x}' with $\mathbf{A}\mathbf{x}' = \mathbf{b}$, making recovery impossible.
- Then Ax Ax' = A(x x') = 0.



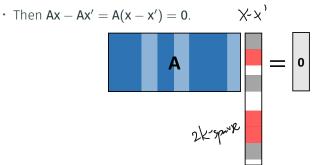
- We want to recover **x** from b = Ax, assuming **x** is k-sparse.
- Say there was a different k-sparse \mathbf{x}' with $\mathbf{A}\mathbf{x}' = \mathbf{b}$, making recovery impossible.
- Then Ax Ax' = A(x x') = 0.



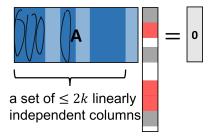
- We want to recover **x** from b = Ax, assuming **x** is k-sparse.
- Say there was a different k-sparse \mathbf{x}' with $\mathbf{A}\mathbf{x}' = \mathbf{b}$, making recovery impossible.
- Then Ax Ax' = A(x x') = 0.



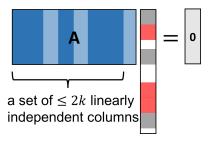
- We want to recover **x** from b = Ax, assuming **x** is k-sparse.
- Say there was a different k-sparse \mathbf{x}' with $\mathbf{A}\mathbf{x}' = \mathbf{b}$, making recovery impossible.



- We want to recover **x** from b = Ax, assuming **x** is k-sparse.
- Say there was a different k-sparse \mathbf{x}' with $\mathbf{A}\mathbf{x}' = \mathbf{b}$, making recovery impossible.
- Then Ax Ax' = A(x x') = 0.

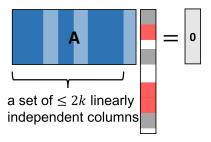


- We want to recover **x** from b = Ax, assuming **x** is k-sparse.
- Say there was a different k-sparse \mathbf{x}' with $\mathbf{A}\mathbf{x}' = \mathbf{b}$, making recovery impossible.
- Then Ax Ax' = A(x x') = 0. Violates Kruskal rank assumption.



Sufficiency of Kruskal Rank 2k:

- We want to recover x from b = Ax, assuming x is k-sparse.
- Say there was a different k-sparse \mathbf{x}' with $\mathbf{A}\mathbf{x}' = \mathbf{b}$, making recovery impossible.
- Then Ax Ax' = A(x x') = 0. Violates Kruskal rank assumption.



• Thus **x** is the unique k-sparse solution to Ax = b.

To satisfy the Kruskal rank $\geq 2k$ assumption **A** just needs 2k rows (compared with d rows to have full column rank). Can recover a d-dimensional k-sparse vector **x** from just 2k measurements $\mathbf{b} = \mathbf{A}\mathbf{x}$.

To satisfy the Kruskal rank $\geq 2k$ assumption **A** just needs 2k rows (compared with d rows to have full column rank). Can recover a d-dimensional k-sparse vector **x** from just 2k measurements $\mathbf{b} = \mathbf{A}\mathbf{x}$.

Assuming that **A** has Kruskal rank $\geq 2k$, how do we actually find the unique k-sparse solution **x** to A**x** = **b**?

To satisfy the Kruskal rank > 2k assumption A just needs 2k rows (compared with d rows to have full column rank). Can recover a d-dimensional k-sparse vector **x** from just 2k measurements **b** = Ax.

Assuming that **A** has Kruskal rank $\geq 2k$, how do we actually find the $A \times 1 = b$ $\times 1 \leq k = spare$ unique k-sparse solution \mathbf{x} to $\mathbf{A}\mathbf{x} = \mathbf{b}$?

 $\mathbf{x} = \underset{\mathbf{z} \in \mathbb{R}^d: A\mathbf{z} = \mathbf{b}}{\text{arg min } \|\mathbf{z}\|_0},$

where $\|\mathbf{z}\|_0$ is the number of non-zero entries in \mathbf{z} .

To satisfy the Kruskal rank $\geq 2k$ assumption **A** just needs 2k rows (compared with d rows to have full column rank). Can recover a d-dimensional k-sparse vector **x** from just 2k measurements $\mathbf{b} = \mathbf{A}\mathbf{x}$.

Assuming that **A** has Kruskal rank $\geq 2k$, how do we actually find the unique k-sparse solution **x** to A**x** = **b**?

$$\mathbf{x} = \underset{\mathbf{z} \in \mathbb{R}^d: A\mathbf{z} = \mathbf{b}}{\text{arg min}} \ \|\mathbf{z}\|_0,$$

where $\|\boldsymbol{z}\|_0$ is the number of non-zero entries in $\boldsymbol{z}.$

This problem seems very difficult to solve. Why?

To satisfy the Kruskal rank $\geq 2k$ assumption **A** just needs 2k rows (compared with d rows to have full column rank). Can recover a d-dimensional k-sparse vector **x** from just 2k measurements $\mathbf{b} = \mathbf{A}\mathbf{x}$.

Assuming that **A** has Kruskal rank $\geq 2k$, how do we actually find the unique k-sparse solution **x** to $\mathbf{A}\mathbf{x} = \mathbf{b}$?

$$\mathbf{x} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A}\mathbf{z} = \mathbf{b}}{\operatorname{arg min}} \|\mathbf{z}\|_0,$$

where $\|\mathbf{z}\|_0$ is the number of non-zero entries in \mathbf{z} .

This problem seems very difficult to solve. Why? Non-convex.

To satisfy the Kruskal rank $\geq 2k$ assumption **A** just needs 2k rows (compared with d rows to have full column rank). Can recover a d-dimensional k-sparse vector **x** from just 2k measurements $\mathbf{b} = \mathbf{A}\mathbf{x}$.

Assuming that **A** has Kruskal rank $\geq 2k$, how do we actually find the unique k-sparse solution **x** to $\mathbf{A}\mathbf{x} = \mathbf{b}$?

$$\mathbf{x} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A}\mathbf{z} = \mathbf{b}}{\operatorname{arg min}} \|\mathbf{z}\|_0,$$

where $\|\mathbf{z}\|_0$ is the number of non-zero entries in \mathbf{z} .

This problem seems very difficult to solve. Why? Non-convex.

Exponential Time Algorithm:

To satisfy the Kruskal rank $\geq 2k$ assumption **A** just needs 2k rows (compared with d rows to have full column rank). Can recover a d-dimensional k-sparse vector **x** from just 2k measurements $\mathbf{b} = \mathbf{A}\mathbf{x}$.

Assuming that **A** has Kruskal rank $\geq 2k$, how do we actually find the unique k-sparse solution **x** to $\mathbf{A}\mathbf{x} = \mathbf{b}$?

$$\mathbf{x} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A}\mathbf{z} = \mathbf{b}}{\text{arg min }} \|\mathbf{z}\|_0,$$

where $\|\mathbf{z}\|_0$ is the number of non-zero entries in \mathbf{z} .

This problem seems very difficult to solve. Why? Non-convex.

Exponential Time Algorithm: Loop through all $\binom{d}{k} = O(d^k)$ sparsity patterns and find the best **z** with the given sparsity pattern by solving a normal linear regression problem.

To satisfy the Kruskal rank $\geq 2k$ assumption **A** just needs 2k rows (compared with d rows to have full column rank). Can recover a d-dimensional k-sparse vector **x** from just 2k measurements $\mathbf{b} = \mathbf{A}\mathbf{x}$.

Assuming that A has Kruskal rank $\geq 2k$, how do we actually find the unique k-sparse solution x to Ax = b?

$$\bigvee_{\mathbf{X}} \underbrace{ \begin{cases} \mathbf{X} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{x} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{X} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{X} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{X} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{X} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{X} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{X} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{X} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{X} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{X} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{X} \in \mathbb{R}^d: \mathbf{A} = \mathbf{b} \\ \mathbf{X} = \underset{\mathbf{X} \in \mathbb{R}^d: \mathbf{A} = \underset{$$

where $\|\mathbf{z}\|_0$ is the number of non-zero entries in \mathbf{z} .

This problem seems very difficult to solve. Why? Non-convex.

Exponential Time Algorithm: Loop through all $\binom{d}{k} = O(d^k)$ sparsity patterns and find the best **z** with the given sparsity pattern by solving a normal linear regression problem.

A major accomplishment of compressed sensing/sparse recovery is to make the above procedure efficient and noise robust.

Example Applications

Example Applications

Caviat: Today we will only talk about sparse recovery without noise when Ax = b. In applications, it is important to be able to recover x from b with Ax = b + n for some small noise n.

Example Applications

Caviat: Today we will only talk about sparse recovery without noise when Ax = b. In applications, it is important to be able to recover x from b with Ax = b + n for some small noise n.

- The techniques discussed carry over to the noisy setting.
- Generally won't find x exactly, but up to some good approximation.

SPARSE REGRESSION

In high-dimensional data analysis, you often have a huge number of variables (genetic markers, characteristics of a user, etc.), possibly more than the number of data points.

In high-dimensional data analysis, you often have a huge number of variables (genetic markers, characteristics of a user, etc.), possibly more than the number of data points.

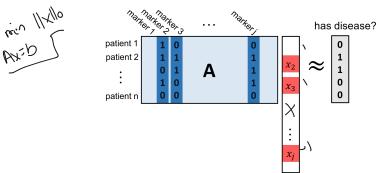
• Believe that just a few important features explain some phenomena (e.g., if a patient is likely to have a certain disease).

In high-dimensional data analysis, you often have a huge number of variables (genetic markers, characteristics of a user, etc.), possibly more than the number of data points.

- Believe that just a few important features explain some phenomena (e.g., if a patient is likely to have a certain disease).
- Want to find a linear regression model $Ax \approx b$ that only uses a small number of features (x is sparse).

In high-dimensional data analysis, you often have a huge number of variables (genetic markers, characteristics of a user, etc.), possibly more than the number of data points.

- Believe that just a few important features explain some phenomena (e.g., if a patient is likely to have a certain disease).
- Want to find a linear regression model $Ax \approx b$ that only uses a small number of features (x is sparse).



In high-dimensional data analysis, you often have a huge number of variables (genetic markers, characteristics of a user, etc.), possibly more than the number of data points.

- Believe that just a few important features explain some phenomena (e.g., if a patient is likely to have a certain disease).
- Want to find a linear regression model $Ax \approx b$ that only uses a small number of features (x is sparse).
- Interesting even in the over-constrained case. Often talked about as a different problem than compressed sensing, but very related.

Recall: The frequent elements problem asks us to return the *k* most frequent elements seen in a stream of items.

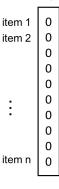
• We saw how to (approximately) solve in O(k) space using Misra-Gries or Count-Min Sketch.

- We saw how to (approximately) solve in O(k) space using Misra-Gries or Count-Min Sketch.
- Only work when frequencies are constantly incremented (we see more items over time). But what about when frequencies can be decremented?

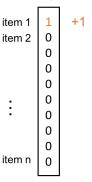
- We saw how to (approximately) solve in O(k) space using Misra-Gries or Count-Min Sketch.
- Only work when frequencies are constantly incremented (we see more items over time). But what about when frequencies can be decremented?
- E.g., Amazon is monitoring what products people add to their "wishlist" and wants a list of most tagged products. Wishlists can be change over time, and items can be removed, decreasing their frequencies.

- We saw how to (approximately) solve in O(k) space using Misra-Gries or Count-Min Sketch.
- Only work when frequencies are constantly incremented (we see more items over time). But what about when frequencies can be decremented?
- E.g., Amazon is monitoring what products people add to their "wishlist" and wants a list of most tagged products. Wishlists can be change over time, and items can be removed, decreasing their frequencies.
- In this setting, the problem is solved with sparse recovery techniques.

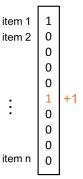
frequency vector **x**



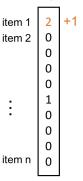
frequency vector **x**



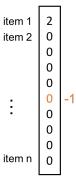
frequency vector \mathbf{x}



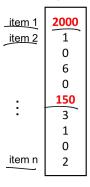
frequency vector **x**



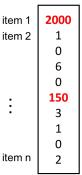
frequency vector \mathbf{x}



frequency vector **x**

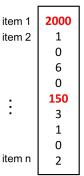


frequency vector **x**

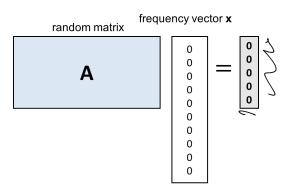


• Storing **x** requires O(n) space. Will instead store Ax where $A \in \mathbb{R}^{O(k) \times n}$ is a random matrix.

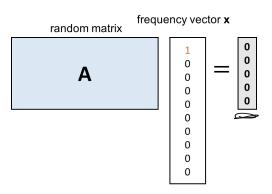
frequency vector **x**



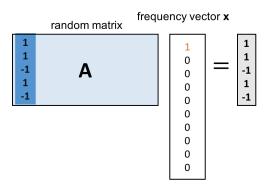
- Storing **x** requires O(n) space. Will instead store **Ax** where $\mathbf{A} \in \mathbb{R}^{O(k) \times n}$ is a random matrix.
- Ax can be efficiently updated in a data stream.



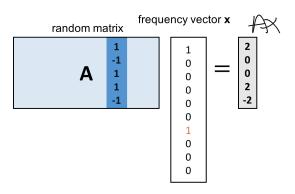
- Storing **x** requires O(n) space. Will instead store **Ax** where $\mathbf{A} \in \mathbb{R}^{O(k) \times n}$ is a random matrix.
- Ax can be efficiently updated in a data stream.



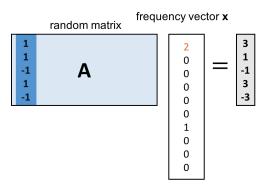
- Storing **x** requires O(n) space. Will instead store **Ax** where $\mathbf{A} \in \mathbb{R}^{O(k) \times n}$ is a random matrix.
- Ax can be efficiently updated in a data stream.



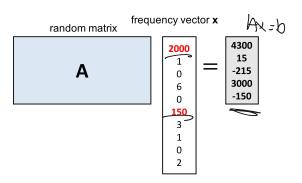
- Storing **x** requires O(n) space. Will instead store **Ax** where $\mathbf{A} \in \mathbb{R}^{O(k) \times n}$ is a random matrix.
- · Ax can be efficiently updated in a data stream.



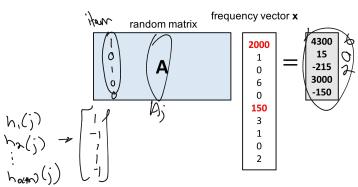
- Storing **x** requires O(n) space. Will instead store **Ax** where $\mathbf{A} \in \mathbb{R}^{O(k) \times n}$ is a random matrix.
- · Ax can be efficiently updated in a data stream.



- Storing **x** requires O(n) space. Will instead store **Ax** where $\mathbf{A} \in \mathbb{R}^{O(k) \times n}$ is a random matrix.
- · Ax can be efficiently updated in a data stream.



- Storing **x** requires O(n) space. Will instead store **Ax** where $\mathbf{A} \in \mathbb{R}^{O(k) \times n}$ is a random matrix.
- Ax can be efficiently updated in a data stream.



- Storing **x** requires O(n) space. Will instead store **Ax** where $\mathbf{A} \in \mathbb{R}^{O(k) \times n}$ is a random matrix.
- Ax can be efficiently updated in a data stream.
- · If there are a *k* heavy items, **x** is approximately *k*-sparse.
- Estimating the large entries of x (the counts of the most frequent items) from the compression Ax is exactly sparse recovery.

SPARSITY IN SIGNAL PROCESSING

Many of the most important applications of sparse recovery are in imaging and signal processing.

- · Many signals are sparse in some basis (Fourier, wavelet, etc.).
- Using sparse recovery techniques, an n pixel image/n point signal can thus be recovered from many fewer than n measurements.
- Efficient MRI imaging, remote sensing for oil exploration, GPS synchronization, power efficient cameras, etc.

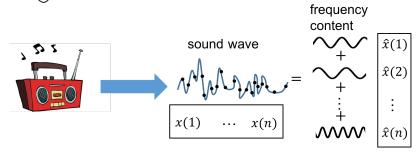
SPARSITY IN SIGNAL PROCESSING

Many of the most important applications of sparse recovery are in imaging and signal processing.

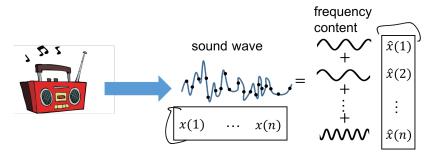
- · Many signals are sparse in some basis (Fourier, wavelet, etc.).
- Using sparse recovery techniques, an n pixel image/n point signal can thus be recovered from many fewer than n measurements.
- Efficient MRI imaging, remote sensing for oil exploration, GPS synchronization, power efficient cameras, etc.

In general, there are a lot of practical complexities here. So everything I say is a major oversimplification.

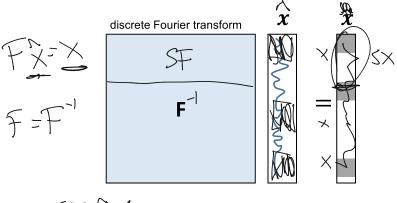
Discrete Fourier Transform: For a discrete signal (aka a vector) $\mathbf{x} \in \mathbb{R}^n$, its discrete Fourier transform is denoted $\widehat{\mathbf{x}} \in \mathbb{C}^n$ and given by $\widehat{\mathbf{x}} = \mathbf{F}\mathbf{x}$, where $\mathbf{F} \in \mathbb{C}^{n \times n}$ is the discrete Fourier transform matrix.

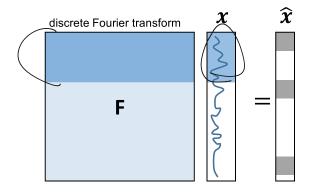


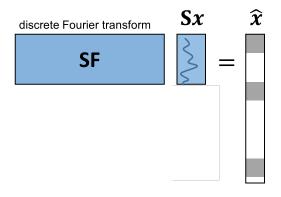
Discrete Fourier Transform: For a discrete signal (aka a vector) $\mathbf{x} \in \mathbb{R}^n$, its discrete Fourier transform is denoted $\widehat{\mathbf{x}} \in \mathbb{C}^n$ and given by $\widehat{\mathbf{x}} = \mathbf{F}\mathbf{x}$, where $\mathbf{F} \in \mathbb{C}^{n \times n}$ is the discrete Fourier transform matrix.



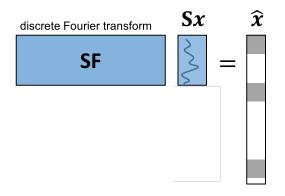
For many natural signals $\hat{\mathbf{x}}$ is approximately sparse: a few dominant frequencies in a recording, superposition of a few radio transmitters sending at different frequencies, etc.







When the Fourier transform $\hat{\mathbf{x}}$ is sparse, can recover \mathbf{x} from few measurements using sparse recovery.



Translates to big savings in acquisition costs, the number of sensors required, etc.

Back to Algorithms

CONVEX RELAXATION

We would like to recover k-sparse \mathbf{x} from measurements $\mathbf{b} = \mathbf{A}\mathbf{x}$ by solving the non-convex optimization problem:

$$\mathbf{x} = \underset{\mathbf{z} \in \mathbb{R}^d: A\mathbf{z} = \mathbf{b}}{\text{arg min } } \|\mathbf{z}\|_0$$

Works if **A** has Kruskal rank $\geq 2k$, but very hard computationally.

CONVEX RELAXATION

We would like to recover k-sparse \mathbf{x} from measurements $\mathbf{b} = \mathbf{A}\mathbf{x}$ by solving the non-convex optimization problem:

$$\mathbf{x} = \underset{\mathbf{z} \in \mathbb{R}^d : A\mathbf{z} = \mathbf{b}}{\text{arg min}} \, \|\mathbf{z}\|_0$$

Works if A has Kruskal rank $\geq 2k$, but very hard computationally. Convex Relaxation: A very common technique. Just 'relax' the problem to be convex.

$$\mathbf{x} = \mathop{\arg\min}_{\mathbf{z} \in \mathbb{R}^d: \mathbf{A}\mathbf{z} = \mathbf{b}} \|\mathbf{z}\|_1 \quad \text{ where } \|\mathbf{z}\|_1 = \sum_{i=1}^d |\mathbf{z}(i)|.$$

We would like to recover k-sparse \mathbf{x} from measurements $\mathbf{b} = \mathbf{A}\mathbf{x}$ by solving the non-convex optimization problem:

$$\mathbf{x} = \underset{\mathbf{z} \in \mathbb{R}^d: A\mathbf{z} = \mathbf{b}}{\text{arg min}} \, \|\mathbf{z}\|_0$$

Works if A has Kruskal rank $\geq 2k$, but very hard computationally. Convex Relaxation: A very common technique. Just 'relax' the problem to be convex. Basis Pursuit:

$$\mathbf{x} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A}\mathbf{z} = \mathbf{b}}{\arg\min} \|\mathbf{z}\|_1 \quad \text{ where } \|\mathbf{z}\|_1 = \sum_{i=1}^d |\mathbf{z}(i)|.$$

We would like to recover k-sparse \mathbf{x} from measurements $\mathbf{b} = \mathbf{A}\mathbf{x}$ by solving the non-convex optimization problem:

$$\mathbf{x} = \underset{\mathbf{z} \in \mathbb{R}^d : A\mathbf{z} = \mathbf{b}}{\text{arg min}} \, \|\mathbf{z}\|_0$$

Works if A has Kruskal rank $\geq 2k$, but very hard computationally. Convex Relaxation: A very common technique. Just 'relax' the problem to be convex. Basis Pursuit:

$$\mathbf{x} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A} \mathbf{z} = \mathbf{b}}{\operatorname{arg \, min}} \|\mathbf{z}\|_1 \quad \text{ where } \|\mathbf{z}\|_1 = \sum_{i=1}^{a} |\mathbf{z}(i)|.$$

What is one algorithm we have learned for solving this problem?

We would like to recover k-sparse \mathbf{x} from measurements $\mathbf{b} = \mathbf{A}\mathbf{x}$ by solving the non-convex optimization problem:

$$\mathbf{x} = \underset{\mathbf{z} \in \mathbb{R}^d: A\mathbf{z} = \mathbf{b}}{\text{arg min}} \, \|\mathbf{z}\|_0$$

Works if A has Kruskal rank $\geq 2k$, but very hard computationally. Convex Relaxation: A very common technique. Just 'relax' the problem to be convex. Basis Pursuit:

$$\mathbf{x} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A} \mathbf{z} = \mathbf{b}}{\operatorname{arg \, min}} \, \|\mathbf{z}\|_1 \quad \text{ where } \|\mathbf{z}\|_1 = \sum_{i=1}^d |\mathbf{z}(i)|.$$

What is one algorithm we have learned for solving this problem?

 Projected gradient descent – convex objective function and convex constraint set.

We would like to recover k-sparse \mathbf{x} from measurements $\mathbf{b} = \mathbf{A}\mathbf{x}$ by solving the non-convex optimization problem:

$$\mathbf{x} = \underset{\mathbf{z} \in \mathbb{R}^d: A\mathbf{z} = \mathbf{b}}{\text{arg min}} \, \|\mathbf{z}\|_0$$

Works if A has Kruskal rank $\geq 2k$, but very hard computationally. Convex Relaxation: A very common technique. Just 'relax' the problem to be convex. Basis Pursuit:

$$\mathbf{x} = \underset{\mathbf{z} \in \mathbb{R}^d: \mathbf{A} \mathbf{z} = \mathbf{b}}{\operatorname{arg \, min}} \|\mathbf{z}\|_1 \quad \text{ where } \|\mathbf{z}\|_1 = \sum_{i=1}^{u} |\mathbf{z}(i)|.$$

What is one algorithm we have learned for solving this problem?

- Projected gradient descent convex objective function and convex constraint set.
- An instance of linear programming, so typically faster to solve with a linear programming algorithm.

Why should we hope that the basis pursuit solution returns the unique k-sparse x with Ax = b? The minimizer z^* will have small ℓ_1 norm but why would it even be sparse?

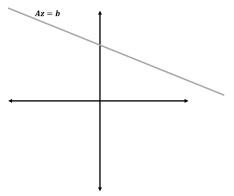
$$\underset{z \in \mathbb{R}^d: Az = b}{\text{arg min}} \ \|z\|_1 \quad \text{ vs.} \quad \underset{z \in \mathbb{R}^d: Az = b}{\text{arg min}} \ \|z\|_0$$

Why should we hope that the basis pursuit solution returns the unique k-sparse x with Ax = b? The minimizer z^* will have small ℓ_1 norm but why would it even be sparse?

$$\underset{z \in \mathbb{R}^d: Az = b}{\text{arg min}} \ \|z\|_1 \quad \text{vs.} \quad \underset{z \in \mathbb{R}^d: Az = b}{\text{arg min}} \ \|z\|_0$$

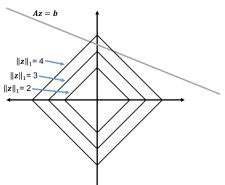
Why should we hope that the basis pursuit solution returns the unique k-sparse x with Ax = b? The minimizer z^* will have small ℓ_1 norm but why would it even be sparse?

$$\underset{z \in \mathbb{R}^d: Az = b}{\text{arg min}} \ \|z\|_1 \quad \text{ vs. } \quad \underset{z \in \mathbb{R}^d: Az = b}{\text{arg min}} \ \|z\|_0$$



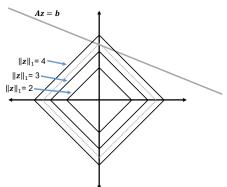
Why should we hope that the basis pursuit solution returns the unique k-sparse x with Ax = b? The minimizer z^* will have small ℓ_1 norm but why would it even be sparse?

$$\begin{array}{lll} \text{arg min} \ \|\mathbf{z}\|_1 & \text{vs.} & \text{arg min} \ \|\mathbf{z}\|_0 \\ \mathbf{z} \in \mathbb{R}^d : A\mathbf{z} = \mathbf{b} & \mathbf{z} \in \mathbb{R}^d : A\mathbf{z} = \mathbf{b} \end{array}$$



Why should we hope that the basis pursuit solution returns the unique k-sparse x with Ax = b? The minimizer z^* will have small ℓ_1 norm but why would it even be sparse?

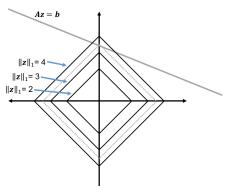
$$\begin{array}{lll} \text{arg min} \ \|\mathbf{z}\|_1 & \text{vs.} & \text{arg min} \ \|\mathbf{z}\|_0 \\ \mathbf{z} \in \mathbb{R}^d : A\mathbf{z} = \mathbf{b} & \mathbf{z} \in \mathbb{R}^d : A\mathbf{z} = \mathbf{b} \end{array}$$



Why should we hope that the basis pursuit solution returns the unique k-sparse x with Ax = b? The minimizer z^* will have small ℓ_1 norm but why would it even be sparse?

$$\begin{array}{lll} \text{arg min} \ \|z\|_1 & \text{vs.} & \text{arg min} \ \|z\|_0 \\ z \in \mathbb{R}^d : Az = b & z \in \mathbb{R}^d : Az = b \end{array}$$

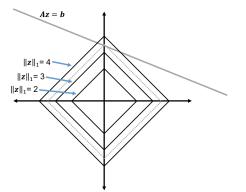
Assume that n = 1, d = 2, k = 1. So $A \in \mathbb{R}^{1 \times 2}$ and $x \in \mathbb{R}^2$ is 1-sparse.



 Optimization solution will be on a corner (i.e., sparse), unless Az = b has slope 1.

Why should we hope that the basis pursuit solution returns the unique k-sparse x with Ax = b? The minimizer z^* will have small ℓ_1 norm but why would it even be sparse?

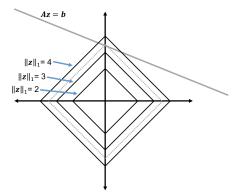
$$\begin{array}{lll} \text{arg min} \ \|z\|_1 & \text{vs.} & \text{arg min} \ \|z\|_0 \\ z \in \mathbb{R}^d : Az = b & z \in \mathbb{R}^d : Az = b \end{array}$$



- Optimization solution will be on a corner (i.e., sparse), unless Az = b has slope 1.
- Similar intuition to the LASSO method.

Why should we hope that the basis pursuit solution returns the unique k-sparse \mathbf{x} with $\mathbf{A}\mathbf{x} = \mathbf{b}$? The minimizer \mathbf{z}^* will have small ℓ_1 norm but why would it even be sparse?

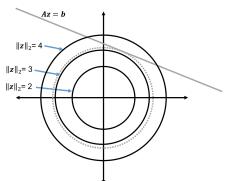
$$\underset{z \in \mathbb{R}^d: Az = b}{\text{arg min}} \ \|z\|_1 \quad \text{vs.} \quad \underset{z \in \mathbb{R}^d: Az = b}{\text{arg min}} \ \|z\|_0$$



- Optimization solution will be on a corner (i.e., sparse), unless Az = b has slope 1.
- Similar intuition to the LASSO method.
- Does not hold if e.g., the ℓ_2 norm is used.

Why should we hope that the basis pursuit solution returns the unique k-sparse \mathbf{x} with $\mathbf{A}\mathbf{x} = \mathbf{b}$? The minimizer \mathbf{z}^* will have small ℓ_1 norm but why would it even be sparse?

$$\begin{array}{lll} \text{arg min} \ \|\mathbf{z}\|_1 & \text{vs.} & \text{arg min} \ \|\mathbf{z}\|_0 \\ \mathbf{z} \in \mathbb{R}^d : A\mathbf{z} = \mathbf{b} & \mathbf{z} \in \mathbb{R}^d : A\mathbf{z} = \mathbf{b} \end{array}$$



- Optimization solution will be on a corner (i.e., sparse), unless Az = b has slope 1.
- Similar intuition to the LASSO method.
- Does not hold if e.g., the ℓ_2 norm is used.

BASIS PURSUIT THEOREM

Can prove that basis pursuit outputs the exact k-sparse solution \mathbf{x} with $\mathbf{A}\mathbf{x} = \mathbf{b}$ (same as $\arg\min_{\mathbf{z} \in \mathbb{R}^d: \mathbf{A}\mathbf{z} = \mathbf{b}} \|\mathbf{z}\|_0$)

• Requires a strengthening of the Kruskal rank $\geq 2k$ assumption (that still holds in all the applications discussed).

BASIS PURSUIT THEOREM

Can prove that basis pursuit outputs the exact k-sparse solution \mathbf{x} with $\mathbf{A}\mathbf{x} = \mathbf{b}$ (same as $\arg\min_{\mathbf{z} \in \mathbb{R}^d: \mathbf{A}\mathbf{z} = \mathbf{b}} \|\mathbf{z}\|_0$)

 Requires a strengthening of the Kruskal rank ≥ 2k assumption (that still holds in all the applications discussed).

Definition: $A \in \mathbb{R}^{n \times d}$ has the (m, ϵ) restricted isometry property (is (m, ϵ) -RIP) if for all m-sparse vectors \mathbf{x} :

$$(1 - \epsilon) \|\mathbf{x}\|_2 \le \|\mathbf{A}\mathbf{x}\|_2 \le (1 + \epsilon) \|\mathbf{x}\|_2$$

BASIS PURSUIT THEOREM

Can prove that basis pursuit outputs the exact k-sparse solution \mathbf{x} with $\mathbf{A}\mathbf{x} = \mathbf{b}$ (same as $\arg\min_{\mathbf{z} \in \mathbb{R}^d: \mathbf{A}\mathbf{z} = \mathbf{b}} \|\mathbf{z}\|_0$)

• Requires a strengthening of the Kruskal rank $\geq 2k$ assumption (that still holds in all the applications discussed).

Definition: $\mathbf{A} \in \mathbb{R}^{n \times d}$ has the (m, ϵ) restricted isometry property (is (m, ϵ) -RIP) if for all m-sparse vectors \mathbf{x} :

$$(1 - \epsilon) \|\mathbf{x}\|_2 \le \|\mathbf{A}\mathbf{x}\|_2 \le (1 + \epsilon) \|\mathbf{x}\|_2$$

Theorem: If **A** is $(3k, \epsilon)$ -RIP for small enough constant ϵ , then $\mathbf{z}^{\star} = \arg\min_{\mathbf{z} \in \mathbb{R}^d: \mathbf{A}\mathbf{z} = \mathbf{b}} \|\mathbf{z}\|_1$ is equal to the unique k-sparse \mathbf{x} with $\mathbf{A}\mathbf{x} = \mathbf{b}$ (i.e., basis pursuit solves the sparse recovery problem).

Questions?